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SUMMARY

Several new methods are developed in this report for
characterizing atmospheric turbulence, estimating the para-
meters of these characterizations using modern statistical
methods, and computing relevant aircraft response statistics
to such turbulence.¥®

In Section 1 of the report, a nongaussian model of atmos-
pheric turbulence is postulated that accounts for readily
observable features of turbulence velocity records, their
autocorrelation functlons, and their spectra. New methods
for computing probabilility density functions and mean exceedance
rates of a generic aircraft response varlable are developed in
Sections 2 and 6 respectively. 1In Section 3, a new method is
developed for maximum likelihood estimation of tle parameters
of a spectrum of known functional form — i.e., the von Karman
transverse and longitudinal spectral forms. Formulas for the
variances of such estimates of the integral scale and intensity
are derived in Section 5. The maximum likelihood method is
combined with a least-squares approach to yield a method for
estimating the autocorrelation function parameters of a two
component model of turbulence in Section 4. Various related
problems are treated in the Appendices. Implementation of
the methods to turbulence velocity records is documented in
another report.

¥Sections 1 through 4 and Appendices A through E of this
report were completed and submitted to NASA for review
in May 1978, Section 5 was submitted to NASA in November
1978, and Section 6 and Appendices F through K were sub-
mitted in October 1980.



TURBULENCE MODEL

In early aeronautical work, turbulence records were
described as gusts. For purposes of computing wling stresses
etc., these gusts were modeled in the 1930's and 1940's as
deterministic functions of time — e.g., Ref. 1.

During this same period of time, a great deal of funda-
mental work on the mathematical description of statistical
phenomena was carried out. Basic mathematical theory of
stationary time series was developed by Wiener [2,3], Khint-
chine [4], and Rice [5]. Wang and Uhlenbeck [6] provide an
excellent description of the state of development in 1945.
Useful aspects of this work were soon applied to engineering
problems — e.g., James, Nichols, and Phillips [7]. The
statistics book by Cramer [8] is a classic.

Also, during this same general period, significant pro-
gress was made by Taylor [9,10] and von Karman [11] in pro-
viding a statistical representation of turbulence. Auto-
correlation functions and power spectra play a fundamental
role in these representations. An early study of the power
spectra of turbulence records was carried out by Clementson

[12].

A principal reason why the power spectrum is so useful
a description of random processes is that 1t possesses exact
input-output relationships for linear time-invariant systems -
the power spectrum of the output is the power spectrum of the
input multiplied by the square of the magnitude of the system
freguency response function. Lin [I13] generally is given
credit for being the first to compute the output (correlation
function) of a mechanical system from a comparable description
of its input. Liepmann [714] applied these ideas to the pro-
blem of buffeting.

Thus, by the early 1950's a methodology existed for
computing response statistics of an aircraft from a statis-
tical description of the turbulence excitation provided
either by the autocorrelation function or its Fourier trans-
form, the power spectral density. If the turbulence excita-
tion is assumed to be stationary and Gaussian, and the air-
craft is modeled as a linear time-invariant system, then
the response process also 1s stationary and Gaussian. In
this case, the power spectrum of the response provides a
complete statistical description of the response process.

However, many turbulence records have a generally non-
stationary appearance. This nonstationary appearance was




taken into account by Press et al. [15] by modeling turbulence
records w(t) as homogeneous Gaussian processes with slowly
varying standard deviations — i.e.,

w(t) = o(t) z(t) | (1.1)

where z(t) 1s a stationary Gaussian process with zero mean
value and unit variance, and o(t) is a nonnegative function

of time that may be regarded as being either deterministic

or stochastic. Considerable effort has gone into computation
of the response statistics of aircraft using the above model.
Much of this work was done by Press [15] and Houbolt [16].
Rice's famous formula [5] for the expected number of crossings
of a stationary random function past a specified threshold
plays a central role in these studies. Sidwell [17] has
described Eg. (1.1) as the Press model of turbulence.

The studies of aircraft response statistilics using the
model of Eq. (1.1) implicitly assume (i) that fluctuations
in o(t) occur slowly in comparison with those of z(t), and
(ii) that variations in o(t) are negligible over durations
comparable wlth aircraft impulse-response-function durations.
Conditions for the validity of assumption (i) are given by
Mark and Fischer [18] and those for the validity of (ii) are
given by Mark in [19]. When these conditions are satisfied,
one requires only the power spectral density of z(t) and the
probability density function of o2(t) to determine the level
crossing rates and probability density function of an air-
craft response varilable of interest. The most pertinent
information about the probability density of o2(t) is con-
tained in its mean value and second moment [19].

One cannot help but inquire how far we can progress
toward computing aircraft response statistics by dropping
the model of Eq. (1.1) and assuming only that the turbulence
constitutes an arbitrary (generally nonGaussian) stationary
random process. This gquestion was addressed by Mazelsky [20]
in 1954 and slightly earlier in the Russian literature — in
a more general context — by Kuznetsov and his associates [21].
Mazelsky and Kugznetsov showed that higher-order autocorrela-
tion functions which are time-averaged lagged products ob-
tained by multiplying turbulence records by themselves
three, four, and more times also possess exact input-output
relations — as do thelr various multidimensional Fourier
transforms. However, computation times, problems of statis-
tical confidence of estimates of these characterizations
obtained from turbulence records of finite duration, and



problems of interpretation collectively make these higher-
order correlation functions and spectra much less attractive
for the characterization of measured records than the con-
ventional autocorrelation function and power spectral density.

Our approach, therefore, is to postulate a turbulence
model sufficiently general to include all readily observable
features of measured turbulence records important to aireraft
responses, and to develop turbulence characterizations from
this model that have input-output relations sufficiently
general to predict output probability density functions and
threshold crossing rates for arbitrary aircraft response
variables. A requirement of these turbulence characteriza-
tions absolutely essential for practical application is that
it be possible to generate realizations of these characteriza-
tions from measured turbulence records.

Three Component NonGaussian Turbulence Model

The simplest model of turbulence as a stochastic process
is that of a stationary Gaussian process. The vertical
record shown in Fig. 1 (Ref. 22) illustrates a turbulence
record that would appear to be reasonably well modeled as a
stationary Gaussian time history — especially the portion of
the record from 120 to 270 sec elapsed time. We might
reasonably model this record using Eq. (1.1) with o(t) taken
to be a constant. However, most records of atmospheric tur-
bulence have a general appearance that is closer to that
shown in Fig. 2 (Ref. 22). ©Notice, for example, that the
portion of the vertical record between 135 and 145 sec elapsed
time has a relatively small rms value; whereas, patches with
much larger rms values occur shortly thereafter in the
neighborhoods of 150 and 160 sec elapsed time. Such behavior
cannot be modeled by a stationary Gaussian process, but can
be reasonably modeled by Eq. (1.1) when o(t) is allowed to
depend on time.

Each of the records shown in Fig. 2 also exhibits an
additive weak low-frequency component that appears to fluc-
tuate independently of the occurrence of the patches. For
example, during the 5-sec interval between 183 and 188 sec
elapsed time on the vertical record, high~frequency fluc-
tuations are absent; however, there remains in that interval
a fluctuating weak low-frequency component. Similar but more
pronounced behavior of this type occurs between approximately
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96 and 99 sec elapsed time on the vertical record shown in
Fig. 3 (Ref. 22). High-frequency fluctuations are absent in
that interval; however, there exists there a relatively strong
low-frequency component. Such behavior cannot be modeled by
Eq. (1.1). Many other excellent records showing similar
behavior may be found in Ref. 22.

The above discussion suggests that we add a low-frequency
component to the model of Eg. (1.1) — i.e., that we postulate
a turbulence model [19]1 of the form

w(t) = w (£) + wp(t) (1.2a)
= w (t) + op(8) z(t) (1.2Db)
where
wal(t) = o.(t) z2(t) , ona(t) >0 , (1.3)
and
E{z(t)} = 0 , E{z2(£)} =1 . (1.4)

In Egq. (1.2a), wg(t) is the "slow" (low-frequency) component
and wr(t) is the "fast" intensitv modulated component described
by Eq. (1.3). Since well-behaved turbulence records such as
the portion of the vertical record shown in Fig. 1 between

120 to 270 sec elapsed time generally have Gaussian (first-
order) probability density functions, we shall further assume
that the stochastic process z(t) in the above model is sta-
tionary and Gaussian. In some of the work to follow, we

also shall assume that wg(t) 1s a stationary Gaussian process.
Thus, the processes {wg(t)} and {z(t)} are fully described

by their power spectral densities or autocorrelation func-
tions. We also shall generally assume that op(t) 1is a
stationary random process; however, since Of(t)>0, we shall
not assume that op(t) is Gaussian. Furthermore, the three
processes {wg(t)}, op(t)}, and {z(t)} will be assumed to be
statistically independent.

Each of the turbulence records shown in Fig. 4 (Ref. 23)
clearly illustrates the three turbulence components wg(t),
op(t), and z(t) in the model of Eq. (1.2). Notice that
throughout each entire record a strong low-frequency component
wg(t) is present. However, for example, between 9 min 0 sec
and 9 min 45 sec on each record, wr(t) is negligible in
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comparison with ws(t); whereas, between about 9 min 45 sec

and 10 min 45 sec, we(t) grows and then decays back to a

small value again. Such behavior is controlled by the temporal
variations in ogr{(t). None of the three records shown in Fig.

4 could satisfactorily be modeled by a single stationary
Gaussian process — or by the process model of Egq. (1.1).
Equation (1.2) is the simplest model capable of describing

the overall turbulence behavior illustrated imn Fig. 4.

Locally stationary assumption. For much of the work to
follow, we shall further assume that fluctuations in of(t)
occur slowly in comparison with those of z(t). The quanti-
tative statement of this assumption [18,19] must be made in

terms of the power spectral density of the process {z(t)}.
T+ & /-F‘\ 'hg +hoe +wn_adtdAnd NnAawer arnaoantvma’l Aarnald+y Af [=(+3)Y1

4T ‘L’Z\-L vilo UWL T o L L lJUVV\.—J. L)tJ\.;\./ LN Tl o A W Wi llo L Ud AP Lo\ v /i s
which we define here as the Fourier transform of the auto-
correlation function of {z(t)} — i.e.,
® —ionf
o, (f) 4 j 9, (1) e ar (1.5)
where
¢, (1) = E{z(t) z(t+1)} . (1.6)

Also let ®é2)(f) be the second derivative of @Z(f):

2{2)(r) & ;:;‘Dzm . (1.7)

Then our locally stationary assumptlion may be expressed as
2 2
d4n of(t) @Z(f)

oz (1.8a)
2{2) (1)

’ << 3272

dt?2

The requirement of Eg. (1.8a) is derived and discussed in
Ref. 18 and is further discussed in Ref. 19. See, in parti-
cular, Eq. (4.53) and pp. 43 to 53 of Ref. 18. When &,(1)
has the form of the von Karman transverse spectrum, with
integral scale Ly, it is shown in p. 51 of Ref. 19 that the
requirement of Eg. (1.8a) reduces to

10



d?en o2(t) 2
L < 0.08 L | (1.8b)
at? - L;

where V 1is the aircraft speed. This requirement is more
meaningfully expressed in terms of Op written as a function
of the spatial wvarlable x = Vt:

dz,Q,n O'%(X/V) 0.08 . (1.80)

L

de 2
4

The examples of this requirement discussed on pp. 43 to 50 of
Dn-m‘" 18 ahn +ha+t when A +uvnical lenath crale TO Of' +he Ffuwne—

ey oW vivlke b Wit e vyp e vy vii olCkeve o e jun=

tion ofl(x/V) is at least 10 times Ly, the locally stationary
assumption of Eq. (1.8) i1s well satisfied.

A more relaxed locally stationary condition expressed in
terms of the autocorrelation function of &n o%(t) and the
aircraft frequency response function of interest is given by
Egq. (5.17) on p. 56 of Ref. 19. An expression for the auto-
correlation function of &n 0%(t) in terms of measurable
gquantities is given by Eq. (5.36) on p. 61 of Ref. 19.

For typical atmospheric turbulence records, the locally
stationary assumption of Eg. (1.8) is belileved to introduce
negligible error in the results to follow. The simulation
studies carried out in Ref. 24 support this conclusion.

Spectral form of z(t). In some of the work to follow,
we shall assume that the process {z(t)} has the appropriate
(transverse or longitudinal) von Karman spectral form. When
the locally stationary condition of Eq. (1.8) is satisfied,
it is shown in Ref. 18 that the spectral form of we(t) = or(t)x
z(t) is unaffected by the fluctuations in or(t) — i.e.,
wr(t) will have the same form of spectrum as {z(t)}.

Comparison with previous related models. A three-
component turbulence model functionally similar to Eq. (1.2)
has been studied by Reeves et al. [25-27] and Sidwell [28].
However, both Reeves and Sidwell assume that their counter-
part to our op(t) is a Gaussian process with zero mean value.

11



This restriction forces their counterpart to we(t) to have
periods of very low intensity [when op(t) is near its mean
value of zero]. Reeves motivation [25—27] for adding his
counterpart to wg(t) is to partially remove such "deep fades."
Thus, in Reeves' model, the power spectra of his counterparts
to wg(t) and wr(t) are taken to have the same Dryden form.

On the other hand, our approach in Refs. 18 and 19, and
in the present work, is to introduce a minimum of assumptions
pertaining to the behavior of or(t) and wg(t) and to extract
descriptions of these processes relevant to the aircraft
response problems from measured turbulence records. Algo-
rithms for computing the power spectra of z(t), ws(t), and
o%(t), and for computing moments and probability density
functions of wg(t) and o%(t) are provided in Sec. 6 of Ref.
19. Some of these technigues are modified and extended 1in
the present work.

Aircraft Response Metrics

Aireraft model. It 1s our goal to develop expressions
for the (first-order) probability density functions and the
threshold mean crossing rates for a general aircraft response
variable — using the above described model of turbulence as
the excitation or input. We shall model the aircraft as a
linear two-terminal time-invariant system described either
by its unit-impulse response function h(t) or complex frequency
response H(f):

n(re) 2 J h(t) e 12Tt q¢ | (1.9)

—C0

For any turbulence sample function w(t), the aircraft response
y(t) is the convolution of w(t) and h(t) — i.e.,

y(t) J h(t) w({t-1t) drt (1.10a)

—_00

11

J w(t) h(t-t) 4t . (1.10b)

-0
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Implicit in this treatment is the assumption that the spatial
variation of w(t) is negligible over dimensions comparable to
those of the aircraft. The alircraft impulse response may
represent the response of any aircraft variable of interest —
e.g., the stress at a critical point in a wing span — to the
turbulence velocity input w(t). The impulse response h(t)
may include the action of a pilot or autopilot modeled as a
linear feedback element. That is, h(t) may be thought of

as either an open or closed loop unit-impulse response func-
tion.

Autocorrelation function input-output relationship. It
is well known — e.g., p. 71 of Ref. 29 — that the power
spectral density Qy(f) of the aircraft response y(t) is re-
lated to the input power spectrum &4(f) and aircraft frequency
response H(f) by

= 2
® (f) = o _(f) |H(£)] . (1.11)

y W

Let ¢y (1) and ¢y(1) denote, respectively, the autocorrelation
functions of the excitation and response processes {w(t)}
and {y(t)}:

6.,(1) J o () eI qr (1.12)

1]
\5___‘
8
1
<
N
]
I_I-
no
3
,_.)
,_]
[oN
(]

¢y(T) (1.13)

Then, from the convolution theorem and Eq. (1.11), it follows
that the autocorrelation function input-response relation-
ship is the convolution

¢y(r) = J ¢h(T—g) ¢W(g) dg (1.1%4a)
= J ¢, (E-1) ¢ (E) dg (1.14p)
= J o (E+T) ¢, (E) dg (1.1lc)

- CO
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where

6, (1) & j lH(£) |2 eT2™IT gp | (1.15a)

—CO

J h(t) h(t+t) dt , (1.15b)

- CO

and where Eq. (1.14b) follows from Eq. (1.14a) and the fact

that the autocorrelation function ¢n(t) is an even function

of 1, and Eg. (l.14c) follows from the fact that ¢y(7) is an
even function of rT.

Since we have assumed that the turbulence components
{wg(t)}, {op(t)}, and {z(t)} are mutually statistically in-
dependent, it follows that {wg(t)} and {wr(t)}also are mutually
independent (and therefore uncorrelated). Therefore, from Eq.
(1.2) it follows that

¢W(T) ¢, (1) + o (1) (1.16a)

S f

¢WS(T) + ¢of(T> o, (1) (1.16b)

where the second line 1s a consequence of Eq. (1.3) and the
assumed Independence of {op(t)} and {z(t)}. Moreover, from
the locally stationary assumption of Eg. (1.8) it follows
[18] that

¢Wf(T) = ¢Of(T) ¢Z(T) (1.17a)
S ¢Of(0) ¢Z(T) (1.17p)
= E{G%} ¢, (1) (1.17c)

hence, we have from Eqs. (1.16c) and (1.17c¢c)

by (1) = ¢ (1) + E{02} ¢ (1) . (1.18)

S
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That 18, our turbulence model of Sec. 1.1 implies that the
autocorrelation function of the turbulence {w(t)} will appear
as a superposition of the autocorrelation function of the
slow component wg(t) and an amplitude scaled version of the
autocorrelation ¢z(t) of the Gaussian component z(t).

The behavior of our turbulence model described by Eq.
(1.18) is illustrated in Fig. 5 for idealized autocorrelation
functions. Notice that ¢WS(T) is shown decaying much more

slowly than ¢z(1). This latter behavior is consistent with
our assumption that the process ws(t) fluctuates slowly in
comparison with the process z(t) — as is evident from the
record shown in Fig. 4. 1In fact, wg(t) may be thought of as
a slowly varying mean wind; whereas, we(t) = op(t) z(t) may
be thought of as ordinary turbulence.

Substituting Eqs. (1 to 1.18) into Eq 1.14c), we may
express the aircraft ’éSpOﬂSé autocorrelation function as

0, (1) = [ oy tern) oy (€) + 8, ()] dc (1.19a)

- | eptero [0, (&) + 95 (2) 9,(2)] de (1.190)

14
—
8

oy, (gtt) Lo, (g) + E{oé} ¢, (g)] dg (1.19¢)

S

which are the desired autocorrelation function input-response
relationships. Equations (1.19a) and (1.19b) are an exact
consequence of the turbulence model described by Eq. (1.2)
and the assumed independence of {wg(t)}, {op(t)}, and {z(t)};
whereas, in Eq. (1.19c), the locally stationary assumption
of Eg. (1.8) has been used.

Aireraft mean-square displacement and velocity responses.
Setting T = 0 in Eq. (1.19) directly yields the mean-square
aircraft displacement response in terms of the turbulence
component autocorrelation functions:

15
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FIG. 5. IDEALIZED SKETCH OF AUTOCORRELATION FUNCTION OF ATMOSPHERIC TURBULENCE
AND AUTOCORRELATION FUNCTION OF ITS COMPONENTS.



T
e e

E{y*} = ¢,(0)
- [ onte) Lo, (o) + oy (67 (1.20a)
S
= [ ent®) Loy (©) + 0 (6) 0,627 ag (1.200)
S
- J ¢, (g) [¢Ws(g) + E{oZ} ¢,(g)] dg , (1.20c)

where the approximation of Eg. (1.20c) again depends on the
locally stationary assumption of Eq. (1.8).

Comparable expressions may be written for the aircraft
mean-square velocity response E{y?}. If we formally dif-
ferentiate Eq. (1.10), we obtain

y(t) = J w(t) h(t-1) a1 , (1.21)

-0

where E(t) is the time derivative of the displacement impulse
response h(t). Since some h(t) of interest may contain dis-
continuities — e.g., at t = 0 — care must be taken in computing
h(t). That is, h(t) must satisfy

t .
h(t) = J h(g) ag . | (1.22)

-0

Thus, if h(t) has a discontinuity then h(t) must contain a
delta function at the same place so that Eg. (1.22) is
satisfied.

As in Eq. (1.15b), we may define for h(t)

¢ (E) 2 J h(t) h(t+t) dat . (1.23)

- OO
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The mean-square velocity response may then be expressed in
the same manner as in Eq. (1.20):

E(y®} = ¢5(0)
= J o7 (g) Lo, (&) + ¢ (g)] dg (1.24a)
S h
= j ¢p(e) Lo () + ¢Of(£) ¢, (g)] dg (1.24b)
S
2 [ ep(e) [o, (&) + BLo2) 4,(5)] at (1.24¢)
S

-0

where the approximation of Eq. (1.24c) again depends on the
locally stationary assumption of Eg. (1.8).

Parametric Description of Atmospheric Turbulence

In order to tabulate relevant features of measured tur-
bulence records, it 1s necessary to characterize such records
by a set of parameters that can be extracted from the records.
The integral scale and mean-square value of a record are
examples of such parameters.

Characterization of "slow" component wg(t). The NASA MAT
program (Measurement of Atmospheric Turbulence) [30] has
concentrated on obtaining atmospheric turbulence recordings
accurate to frequencies (wavenumbers) well below typical
positions of the "knees" of von Karman spectra. This effort
has recuired exceptional care in aircraft instrumentation [31].
Typical autocorrelation functions computed from MAT records
suggest that an efficient characterization of autocorrelation
function ¢Ws(£) of the low-frequency component wg(t) is a low-

order polynomial approximation to ¢WS(£) valid in the neigh-

borhood of & = 0 [pp. 64,65 of Ref. 19]. Although this low-

order polynomial representation may be interpreted as the

first few terms of a Maclaurin expansion of ¢, (£), we shall
s

use a (constrained) least-squares procedure to compute the
actual expansion coefficients as described in Sec. U4 of
this report.

18
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Figure 6 displays the autocorrelation function of the
vertical record shown in Fig. 4. According to Fig. 6, about
78% of the "power" in the vertical record of Fig. 4 is in
wg(t) and about 22% is in we(t).

To motivate our concentration on ¢,4(&) in the region of &
near the origin, we note first that to predict the flrst-order
probability density functions and threshold mean crossing
rates of aircraft responses, we require E{y?} and E{¥2} [pp.
34—50 of Ref. 19]. Expressions for these quantities are
given by Eqs (1.20) and (1.24) of this report. If we de-
compose E{y2?} and E{y?} into contributions from our "slow"
and "fast" components ws(t) and wg(t), respectively,

E{y?} E{yg} + E{y%} (1.25)

and

i

E{y?} = E{y2} + E{y}} , (1.26)

then we see from Egs. (1.20) and (1.24) that the slow component
contributions are given by

B(yZ) = | 4n(8) 0, (8) & (1.27)
S
and
E{y*} = J op(8) o, (&) dg . (1.28)
S
Let us now assume — for the purposes of the present discus-

sion — that h(tf) and h(t) are of duration T sec only — e.g.
that h(t) and h(t) are zero outside the interval 0<t<Ty.
Then, it is easy to show from Egs. (1.15b) and (1.23), re-
spectively that ¢p(£) and ¢;(£) are zero for lg|>T Con—
sequently, from Eqs (1.27)7and (1.28), we see tha% E{y

and E{y3} depend on the values of ¢w (g) only for values

of & satisfying |€|<T
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FIG. 6. AUTOCORRELATION FUNCTION OF VERTICAL RECORD SHOWN IN FIG, 4. [MOUNTAIN
WAVE CONDITIONS. AIRCRAFT SPEED 197 m/sec (646 ft/sec.)]



As an example [23], we consider an aircraft flying at
Mach 2.7 at an altitude of 18 km (60,000 ft) where the speed
of sound is approximately 297 m/sec (975 ft/sec). If we take
Ty, = 3 sec, then the correlation interval of interest is about
2BOO m (7900 ft). On the other hand, if we take Tn = 10 sec,
the correlation interval of interest is about 8000 m (26,200
ft). For the autocorrelation function displayed in Fig. 6,
we see that, for the 3-sec impulse response, a linear approxi-
mation to ¢WS provides a good fit; whereas, for the 1l0-sec

impulse response, a quadratic approximation would be adequate.
Consequently, we shall take for our parametric representation

du (£) of oy (8):

m .
(g) & I ael, (1.29)

where the degree m chosen for the above polynomial representa-
tion of ¢y (&) is to depend on the observed complexity of
S

¢WS(E) and the interval in £ over which ¢WS(E) is to be
represented by Eq. (1.29).

Two fundamentally different approaches may be used in
generating the representation of Eq. (1.29). On the one hand,
we may take the expansion interval as 0<g<Tp and include both
odd and even powers of & in the expansion. This procedure
clearly is the best for the autocorrelation function shown in
Fig. 6. On the other hand, we may take for the expansion
interval, the even interval -Tp<g<Tp. Since, by definition,
¢WS(£) must be an even function of &, this latter approach

must contain only even powers of &§. Generally, the latter
approach will require higher powers of £ to get a good fit
using Eg. (1.29) — i.e., a larger value of m — but it has

the advantage that the integrals obtained by substituting

Eq. (1.29) into Egs. (1.27) and (1.28) are, in some situa-
tions, more easily evaluated.

The reader may wish to interpret Egq. (1.29) as a trun-
cated Maclaurin series expansion. In the first of the above
two approaches where Eq. (1.29) applies to the interval
0<E<Ty, the derivatives of ¢y (£) in the interpretation must

s
be considered as one-sided derivatives valid only in the

region £>0 — i.e., we have aj = ¢(j>(0+)/j!, where ¢(j)(0+)
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denotes the jth order derivative evaluated at & = 0+. In
the second of the above two approaches where Eq. (1.29) ap-

plies to the interval -Tp<E<Tp, we have aj = ¢(J)(O)/j!,
where here no "one-sided condition" is required since, in this

interpretation, it is assumed that ¢(J)(£) is continuous at
£ =0 for j =0,1,2,...,m.

Since the integrands of Egs. (1.27) and (1.28) are
necessarily even, our estimates of E{y3} and E{y3} obtained
using Eq. (1.29) may be expressed as

m o .
E{y;} ~ 2 ) a, J gJ ¢, (&) dg (1.30)
j=0 Y4
and
L] m *® 1
E{y;} ~ 2 ) a, J g o5 () dg . (1.31)
J=0 ! 0 .

Equations (1.30) and (1.31) are valid for either of the above
types of expansion. However, from the Fourier mate to Eq.
(1.15a), we have

7(f) |2 = J 6, (8) e TME ar (1.32)

Differentiating Eg. (1.32) J times, we find

a2 (Cionyd 7 gl g (5) o7127TE g | (1.33)
ar? °

hence, setting f = 0 in Eg. (1.33), we have

1 ad |H(r) |2

- - (1.34)
(—i2m)d  arY

j g ¢, (6) ag =

- 00

=0

For j = odd, both sides of Eg. (1.34) vanish; however, for
J = even, we have

J Ej ¢h(E) ag = 2 j Ej ¢h(E) dg , j = even. (1.35)

~—00 0
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Thus, the terms j = even in Eq. (1.30) may be evaluated from
|JH(£)|? using Egs. (1.34) and (1.35). Furthermore, for well-
behaved h(t), we have from the Fourier mate to Eq. (1.9):

h(t) = J 1omfH(F) eT2TEE 4 | (1.36)

- 00

hence, i2nwfH(f) is the Fourier transform of h(t). It follows
from this fact and Eq. (1.34) that

R . 2 J 2
[ e a0 ag = 1 &5 fencn | (1.37)

(-i2m)d ard £=0

— 00

For j = odd, both sides of Eg. (1.37) vanish; however, for
j = even, we have

[ el opce) az = 2 J gl ¢;(8) ag , § = even. (1.38)

-0 0

The terms j = even in Eg. (1.31) may be evaluated from |H(f)|?
using Egs. (1.37) and (1.38).

For situations where odd powers of j are included 1in
Egs. (1.30) and (1.31), a different approach is available
for evaluating these expressions. We may decompose ¢ {7)
into components arising from wg(t) and wr(t) where, from
Eq. (1.19a), we see that the contribution from wg(t) can be
written as

o, (1) = [ op(e+) o, (©) ag . (1.39)

S S

Differentiating Eq. (1.39) twice yields

0y (1) = | opter o, (o) ar (1.140)

S

— 00
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where we note that

5323 = —e0 (0) = | op(®) 0y (8) €5 (1.41)
S

-_—C0

see — e.g., p. 33 of Ref. 18. 1In regard to the behavior of
op(g) at € = 0, we point out that inclusion of mass or inertia
in the aircraft impulse response h(t) guarantees continuity of
o' (E) at £ = 0. Since ¢p(g) is an even function of &, ¢ﬂ(g)
also must be even; hence, we may rewrite Eg. (1.41) as

B = -2 | e(e) 9, (0) ac (1.42)

]

|

while, from Eq. (1.39), we may express E{y3} = ¢y (0) as
S

siy2 =2 [ o(8) o, (8) A . (1.43)
S

0

Combining Egs. (1.43) and (1.42) with Eq. (1.29) yields

m oo
. J
Blygh =2 1% l el ¢, (8) ag | (1.40)
and
. 2 m o j
E{yZ} = -2 jzo 8 l Y ¢p(g) dg (1.45)

where Egs. (1.44) and (1.45) are valid for cases where both
odd and even powers are included in Eq. (1.29), or cases
where only even powers are included. Furthermore, 1t is
possible to avoid taking moments of the derivatives of ¢h(g)
as we now show. Using integration by parts, we have

© ., . oo [ s_
["67 opcer ag = & ope) -5 | &7 epe) a

0 l 0 0

- o P e as L5 21, (1.46)

0
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=

S

since the first term in the right-hand side of the first line
vanishes for j>1. Repeating the integration by parts on the
right-hand side of Eq. (1.46), we further have

SEEERY RN da]
0

0

J gl or(e) ag -j[gj‘l 6, ()

0

3(3-1) J 972 g, () ag , 522, (14T
0

since the first term 1n the right-hand side of the first line
vanishes in this case for j>2. Combining Egs. (1.46) and
(1.47) with Eq. (1.45) yields

E{y2} = —2[a0 J op(g) i - a, J 91,(£) At

0 0

m 0 .
MVREICEEAL J 97 0, (0) dg}. (1.48)
J= 0

Equations (1.44) and (1.48) are particularly suitable for
computing E{y3} and E{J3} in cases where the "one-sided"
expansion including odd powers of & is used in Eq. (1.29).

In view of the fact that the first or higher order derivatives
of turbulence autocorrelation functions may not be continuous
at £ = 0, representation of ¢WS(E) over the interval 0<&<Ty

by Eg. (1.29) using odd as well as even powers of &, and then
computing E{y3} and E{y3} with Egs. (1.44) and (1.48) is
probably the best overall method. It is easy to relate the
moments in the right-hand sides of Egs. (1.44) and (1.48) to
derivates of the unilateral Laplace transform of ¢h(£) —
which may be useful in evaluating the moments.

The autocorrelation function ¢ws(5) of the "slow" com-

ponent wg(t) contains complete information about the power
spectrum of wg(t), because the two are a Fourier transform
patr. The most useful general set of parametric descriptors
of this Fourier transform pair appears to be the set of co-
efficients a;, §=0,1,...,m of a power series representation
of ¢ws(£). gince ¢ws(£) 18 necessarily an even function of &,
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this representation may be chosen to approximate ¢w (£) over

either 0<E<Ty or ~-Ty<E<Ty, where Ty is the duration of the
aireraft impulse response of interest. The representation
over 0<E<Ty generally will be preferable because of its more
rapid convergence. In this case, Eqs. (1.44) and (1.48) may
be used to compute E{y2} and E{43}. However, the representa-
tion over the interval -Ty<&E<T permzts evaluation of all
integrals in Eqs. (1.30) and (1.31) directly from the squared
aireraft frequency response magnitude |H(f)|? using Egs.
(1.34), (1.35), (1.37), and (1.38).

In addition to a representation of ¢WS(£), we shall re-

guire the first few moments of the probability density of
wg(t), say the first four, in order to verify the Gaussian
property of wg(t). A method for computing these moments and
forming an approximation to the first-order probability den-
sity of wg(t) is described in Sec. 6.4 of Ref. 19.

Characterization of stochastic intensity of(t) of the

"fast! component we(t). The locally stationary assumption
of Eq. (1.8) of this report involves only turbulence charac-
teristics. For this assumption to be satisfied, varlations

in the intensity op(t) of the fast component must be small
over intervals comparable with the integral scale or nominal
correlation interval of the component z(t). Two additional
locally stationary conditions were studied in Ref. 19. These
additional two conditions are given by Egs. (3.43) and (3.46)
on p. 32 or Egs. (5.9) and (5.10) on p. 54 of Ref. 19.
Equations (5.9) and (5.10) are a statement of these conditions
for engineering purposes, and are somewhat more easily satis-
fied than Egs. (3.43) and (3.46). The physical interpretation
of the combination of these two additional conditions is

that variations in Of(t) must be negligible over durations
comparable to the duration Ty of the airecraft impulse response
function of interest. Thus, satisfaction of these additional
two locally stationary conditions depends on aircraft charac-
teristics as well as the behavior of the turbulence component

op(t).

For situations where these additional two locally sta-
tionary conditions are satisfied, it was shown in Secs. 4.1
to 4.4 of Ref. 19 that the first-order probability density
function and threshold mean crossing rates of an aircraft
response variable can be computed from the probability density
function of ¢2%; and furthermore, that the first few moments

of the probability density of o% provide the most important
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parametric descriptions of cg(t). Although a careful study
of these additional locally stationary conditions involving
recorded turbulence data and actual aircraft characteristics
has not been made, we generally would expect these additional
two locally stationary conditions to be satisfied for sub-
sonic aircraft for engineering purposes. However, these
additional .two conditions may not be satisfied in the case

of supersonic aircraft.

It will be shown in later sections of this report that
when the additional two locally stationary conditions are not
satisfied, we shall require the power spectral density ¢,2(f)

or autocorrelation function ¢02(T) of o 2(t) to predict

the most important nonGau581an correctlon terms for the first-
order probability density of an aircraft response variable.
The most important parametric descriptors of ¢52(t) are the

T

first few "one--sided" or "two-sided" power series expansion
coefficients of ¢52(1t) — as was the case for ¢y (71).
£ S

Characterization of stationary Gaussian component 3(t)
of the "fast" component wf(t). Since z(t) 1s, by hypothesis,
a stationary Gaussian process with zero mean value and unit
varlance, 1t is completely described by its power spectral
density or autocorrelation function. In our computational
work, we shall assume that z(t) possesses the appropriate
(transverse or longitudinal) von Karman spectral form. For
these cases, z(t) is completely described by a single para-
meter — the integral scale L, of the appropriate transverse
or longiltudinal von Xarman spectral form.

Summary of Turbulence Model Characterizations
Basic Model

w(t) = ws(t) + Gf(t) z(t)

on(t) >0, E{z} =0, E{z?} =1

b

ws(t) stationary and Gaussian

>

of(t) stationary,
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z(t) stationary and Gaussian

ws(t), cf(t), and z(t) mutually independent.

"Complete” Characterization of Model

Component

w (t)

o%(t)

z(t)

Characterization

P.S.D. or Autocorrelation func-
tion of wg(t), (Also P.D.F. of
ws(t) to "check" Gaussian
Assumption.)

P.S.D. oryAutocorrelation Func-
;. - 2 71N m TN T o L2 7N
tion of ox(t), P.D.F. of 0x(L).
P.S.D. or Autocorrelation Func-
tion of z(t).

Parametric Characterization of Model

Component

wg(t)

on(t)

z(t)

28

Or
P.D.F. of c%(t).

Characterization

"One-sided" or "two-sided" power
series expansion coefficients

of autocorrelation function of
wg(t), (Also first few moments
of P.D.F. of wg(t) to check
Gaussian assumption.)

"One-sided" or "two-sided" power
serles expansion coefficients
of autocorrelation functilion of

2(t), First few moments of

Integral scale of appropriate
(transverse or longitudinal)
von Karman spectrum.



AIRCRAFT RESPONSE PROBABILITY DENSITY FUNCTIONS

In Sec. 4.4 of Ref. 19, a series expansion was developed
for the first-order probability density function of an arbi-
trary aircraft response variable. The expansion is valid for
situations where the three locally stationary conditions
described above and in Ref. 19 are wvalid. In this section,

g similar series expansion for the first-order probability
density of an arbitrary alrcraft response variable is devel-
oped; however, in this new treatment only the first locally
stationary condition described by Eq. (1.8) is required. This
condition depends on turbulence properties only, and is
believed to be virtually always satisfied. Thus, the present
results apply to supersonic aircraft with arbitrarily high
Mach numbers — as well as to subsonic aircraft for which the
simpler results of Sec. 4.4 of Ref. 19 apply.

Gaussian Property of Response Process Conditioned
on the Intensity Modulation Process of(t)*

In Sec. 2, we shall assume that the "slow" component
wg(t) and the component z(t) in the turbulence model of Eg.
(1.2) both are stationary Gaussian processes with zero mean
values. When wg(t) and z2(t) satisfy this zero mean and
Gaussian assumption, the response process y(t), conditioned
on the process of(t) is a zero mean strictly Gaussian (gen-
erally nonstationary) process. To prove this, we note first
that each sample function of the response process {y(t)} can
be expressed as

y(t)|op(u) = y () + yelt)|op(u) , —e<ust (2.1)

where yg(t) 1s the aircraft response to the "slow" turbulence
sample function ws(t) in Eq. (1.2),

7o(t) = | n(o) wy(-1) ar (2.2)

0

¥This section closely parallels Sec. 4.1 of Ref. 19.
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and yg(t)|op(u) is the aircraft response to the "fast" tur-
bulence sample function we(t) in Eq. (1.2),

J h(t) [we(t-t)]|op(u)] dr, -e<ust
° (2.3a)

Ye(t)|op(u)

o0

J h(t) Of(t—T) z(t-1) dz
0 (2.3b)

The vertical bars followed by op(u) in Egs. (2.1) and (2.3)
denote that, in the stochastic process interpretation of these
equations, the sample function cf(u) is assumed to be known

or specified for all values of u within the interval -«<u<t.
Also, in writing Egs. (2.2) and (2.3), we have assumed that
h(t) is deterministic and causal — i.e., that h(t) = 0 for
t<0. When op(u) 1is assumed to be known or specified for all
-o<u<t, the right-hand side of Egq. (2.3b) represents a (deter-
ministic) linear transformation of the Gaussian random function
z(t). Thus, the conditional random process {yf(t)|of(u)},
where op(u) 1s specified for all -«=<u<t, is itself strictly
Gaussian (and generally nonstationary) — since any linear
transformation of a Gaussian process is itself Gaussian —
e.g., Cramer [8], pp. 312 and 313. Furthermore, {wg(t)} is
assumed to be Gaussian; thus, from the linearity of Eq. (2.2),
the random process {yg(t)} also is Gaussian. Moreover, since
{wg(t)} and {z(t)} are assumed to be independent, {yg(t)}

and {yp(t)|op(u)} also are independent. Finally, since the
sum of any number of independent Gaussian processes 1s neces-
sarily Gaussian — e.g., Cramer [8], p. 316 — it follows from
Eq. (2.1) that the conditional response process {y(t)|op(u)},
where op(u) is specified for all -w=<u<t, is strictly Gaussian
(and generally nonstationary). This result does not depend

on any locally stationary assumption. From the zero mean
value assumptions for the processes {wg(t)} and {z(t)} it
follows further from Eqgs. (2.2) and (2.3b) that {y(t)|or(u)}
also has zero mean value.

Let us denote the conditional mean square value of the
process {y(t)} by

n>

g% = g2(%)
y

7 E{y?(t)op(uw)} , -—w<u<t ; (2.4)

30



et |

T

that is, o2 is the expected value of the squared system re-
sponse given that op(u) is specified for all -~<u<t. The
expectation operation therefore takes place over the ensembles
of input functions {wg(t)} and {z(t)} with op(u) being con-
sidered as known. Slnce {y(t)]op(u)} is generally non-
stationary, 02 is generally a function of t. Furthermore,

when we (later) consider of(t) to be a stochastic functlon

of time, (t) also becomes a stochastic function of time.

Let us now consider the function Uf(u), —o<u<t to be
the limiting case of an infinite dimensional "vector"
gp = op(ur,uz,...,up) as n is taken to approach infinity
and uj+1 - uj is shrunk to zero for all j = 1,2,...,n-1.
Thus, the assumption that the "vector" gy 1s specified is
identical to an assumption that the function op(u) 1s speci-
fied for all -w~<u<t. Let p(ylge) denote the conditional
probability density of the aircraft response y(t) given that
op(u) is specified for all -«<u<t. Then, from the above
dlscu531on, p(lef) is strictly normally distributed with
variance oy = Oy(t) described by Eq. (2.4):

2

557

o

- 1

p(ylop) = e yo. (2.5)
m O

g~

Series Expansion of Response Probability
Density Functions

Equation (2.5) expresses the conditional probability
density of the aircraft response y(t) given that the random
function op(u) is specified for all values of 0O<u<t. The
unconditional probability density of the aircraft response
is the expectation of p(YIUf) with respect to the joint
probability density of the vector Jes i.e.

p(y) = J p(ylge) plog) dog (2.6a)
0
= E{p(ylgp)} (2.6b)
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where the integral in Eq. (2.6) represents the limiting case
of an infinite order integral over the n-dimensional space
{ul,uz,...,un} as n is taken to approcach infinity and

Uje] = U3 is"'shrunk to zero for all j = 1,2,...,n=1 as

is described above. (It will become evident shortly that no
such integrals will have to be carried out to apply the
methods being presented.)

In most fturbulence records, fluctuations in the stochastic
function op(t) are of the order of not more than 50% of the
mean value of op(t). Each sample function ope(t) in our con-
ceptual ensemble {op(t)} gives rise to a different function
oy (t) as indicated by Eqg. (2.4)." Furthermore fluctuations
1n 0%2(t) relative to the mean value of o2 are comparable to
or less than fluctuations in ¢?(t) relative to its mean.
Consequently, we need only consider variations in the right-
hand side of Eg. (2.5) that are caused by "small" variations

in 0§ relative to the mean o¢2

y of of:

2 é 2
g = E{c2%} . 2.

v v (2.7)
Such variations in p(y]g ) may be efficiently represented by

a Taylor's series expansion of the right-hand side of

Eg. (2.5) in the variable U§ about its mean value Eg —i.e.,

(k)
( ) _
E____Zlgi_ (02_02)k , (2.8)
0 k! yoy

l~1 8

p(yloea)
Ip N

where we have used the definition

k
p(k)(ylof) & d—k p(ylop) (2.9a)
- d(Gz) 2__2
O~ =0=
y oy
y2
k - 2
-4 - 1 . 29 , (2.9b)
d(c2)* Vo o2 _
y y g2=g2
y Uy
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according to Eq. (2.5), and where

2 (ylo) = plylo,) . (2.10)

Let us denote the central moments of c; by

uég) 8 E{(o§-E§)k} (2.11a)
= J [E{yz(t)lgf} - ggjk p(o,.) do s (2.11b)
[

where, in going to the second line, we have used Eqg. (2.4)
and the vector notation for oe(u). If we now substitute
Eq. (2.8) into Eg. (2.6a), then interchange orders of inte-
gration and summation, and compare the resulting expression
with Eq. (2.11), we see that our serilies expansion of p(y)
may be expressed as

(k)
Ucz
—L p(k)<YIgf)

0 k!

p(y) = (2.12)

k

>

llo~1 8

where p ¥ (y|gp) is defined by Eq. (2.9) and u§§> is the kth

central moment of c§ as defined by Eq. (2.11). Y

Equation (2.12) is the desired series expansion of p(y).

Since u<%) = 1, the first term in the right-hand side of

Eq. (2.12) is p(ylgf) ___ , whereas the term corresponding

to k = 1 is zero because ué%) = 0. Consequently, the first
y

two nonvanishing terms of the right-hand side of Eq. (2.12)
are
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1. (2) _(2)
p(y) ~ p(ylog)| , -+ 512" " (ylop) . (2.13)
o=0 y
y ¥
Our motivation for taking o3 = E§ as the expansion point
of our Taylor's series is threefold: “in this case (i) when

02 is a constant, the first term is in exact agreement with
t%e known Gaussian result, (iil) the term k = 1 in Eq. (2.12)

vanishes identically since u(l) =0, and (iii) the second

0,2
v —
moment of o2 is minimized about the expansion point ¢2 = g2;
hence, the %irst correction term to the term k = 0 is”
minimized.
Discussion. From Eq. (2.5), we see that the first term

in the right-hand side of Eqg. (2.13) is the Gaussian density

function with wvarilance 0§ = g2. Thus, in those situations
where 0% is a constant - whic% occur when 0% is a constant —
Eq. (2.%3) reduces to the known Gaussian result for stationary
Gaussian aircraft excitations. In Appendix A, it 1is shown
that the low-order correction terms to the Gaussian first

term in Eq. (2.12) are

p(ylo.)
p(l)(le ) = SRLAES S I'Ad -1 (2.1ha)
-\,f 20,2 0,2
y y —
02=g2
y oy
p(ylop)
< y
=== H2<E;) o, (2.14b)
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p(yloa)
p(2)(y’o.f) - ~f Jq - 6 _ﬁ + 3 (2.15a)
~ 4(o2)? | (02)? o2
y y y 02=02
y 'y
p(ylos)
S H, v , (2.15b)
4(g2)?2 Oy —
y =Jgf
y y
and
p(yloa)
p(?’)(yldf) = — =
~ 8(02)3
y
[y263-15 A +u5y—2——15]
(o) (c2)2 o2 2 7
y y y oy—oy
(1o (2.16a)
ply (o
= YorITn 2;5 HG(EBI_) (2.16Db)
c y —
y _\/ 2
%= Yo
The general form of the above three terms is
p' ' (ylo,) = —=— H I , (2.17)
~f (20;)]& 2k Oy

where, in Egs. (2.14) through (2.17), sz(-) denotes the
Hermite polynomial of degree 2k as defined on p. 133 of Ref. 8.

It may be shown that (at least through the term k = 3)
the series expansion of Eq. (2.12) is identical to the Gram-
Charlier series of type A — e.g., Ref. 8, pp. 222, 223.
However, our derivation of Eg. (2.12) is entirely different
from the usual derivation of the Gram-Charlier series. Our

35




derivation was based on a Taylor's series expansion of the
Gaussian density of Eq. (2.5) where derivates were taken with
respect to the variance of o2 at a generic point y. (Con-
sequently, the expansion functions of Eq. (2.9) have the
property that for sufficiently small low-order central moments
(k)
Uoz
Eq? (2.12) should provide an excellent approximation to p(y)
for every value of y in the range -«=<y<wo, That is, the forms

of the expansion functions p k)(y|gf), k= 2,3,..., (considered
as functions of y) are the optimal choices for a good fit over
the entire range -«<y<w of interest of the variable y. A pro-
perty of this type cannot be inferred from common derivations
of the Gram-Charlier — e.g., Ref. 8, pp. 222, 223 — and, in
fact, may be valid only for linear transformations of the class
of intensity modulated Gaussian processes being considered
herein — c¢f., von Mises [32, p. 137].

s> kK =2,3,..., a small number of terms in the series of

Example of Two-Term Expansion of Response
Probabiiity Density Functions

In order to evaluate the terms through, say, k = N in the

expansion of Eg. (2.8), we require o2 = E{o%} and the central

moments defined by Eg. (2.11la) through k = The quantity
E{c2} can be evaluated by integrating over -«<f<® the power
spectral density of the aircraft response. In the next

section of this report, a new method will be described for

evaluating The coefficient ué§> of the first and most
important correction term in ghe expansion. The accuracy of
the two terms of the expansion described by Eq. (2.13) there-
fore is of considerable interest.

To ascertain typical accuracy that can be expected from
the two-term expansion described by Eq. (2.13), we consider
a one-dimensional analog of Eq. (2.6a), which, we recall is
the exact expression for p(y) that Eg. (2.13) approximates.
To relate this one-dimensional analog to the infinite dimen-
sional integration in Eq. (2.6a), we recall that when fluctua-
fions in the process 0.(t) are negligible over time intervals
comparable with the nominal duration of the aircraft impulse
response h(t), the response process is locally stationary
and Gaussian [19] with instantaneous time-varying variance

o§ = cé(t) % E{yz(t)|of(t)} . (2.18)
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Equation (2.18) differs from Egq. (2.4) in that in the quasi-
statlonary approximation involved in Eq. (2.18), at each value
of t,0 (t) depends on the value of the function op(t) ob-
served only at the same instant of time — rather than on

op(u) observed over -—w<u<t as in Eq. (2.4). Thus, Eq. (2.6a)
may be replaced in this quasi-stationary approximation by

p(y) = J p(y]cf) p(Of) do . _ (2.19a)
0 g2
[oe] - 2 2
_ Lo 2% o(o,) ao, (2.19b)
0 V2mo
y2
= j —L e Y p(e?) a2 (2.19¢)
0 y y
V2mo?
y

where,* in going to Egq. (2.19b) we have substituted Eq. (2.5)
where 0§ is a function of oy as indicated by Eq. (2.18), and
in going to Eq. (2.19c) the probability density p(or) has

been mapped into the probabllity density p(c§) with the trans-
formation between oy and 02 described by Eq. (2.18). 1In this
regard, we note that Eq. (g 18) implies the existence of a
generally different value of 0% for each different value of

of — i.e., defines o% as a function of op. Therefore, the
probablllty density p(or) 1mp1101tly defines from the function
Oy(Of) the probability density p(O ) shown in Eq. (2.19c).

When the ailrcraft excitation is a stationary Gaussian
process,of is a constant; therefore, from Eq. (2.18) o3 also
is a constant and p(c2) is a delta function located at” the
correct value of o&%. “For this limiting case, the integration
in Egq. (2.19c¢) wilX yield a Gaussian proability density with
the correct variance.

¥In Egs. (2.19a) to (2.19c) and the discussion following them,
we denote the probability density functions of the random

variables oy and 0§ by p(og) and p(ojy), respectively. There-

fore, p(or) and p(c3) are different functions of their
arguments. To keep”the notational problem from getting out
of control, we shall generally follow this practice in the
following pages. That is, probability density functions of
different random variables will be denoted by p(-) with the
arguments being the random variables the densities describe.
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In order to ascertain the typical accuracy that can be
expected from the two-term expansion of Eq. (2.13), we con-
sider for the probability density p(c2) in Eq. (2.19¢) the
gamma density — e.g., pp. 220-221 of Ref. 33:

_ \vy-1 -y 02/5?
e ogf) YL

G;T(Y>
g%) =
p( y)
0 , 02<0
y

(2.20)

The gamma density function generally is expressed as a function
of two "free parameters" which are uniquely determined by the
mean and variance of the distribution. Instead, we have

written Eq. (2.20) directly in terms of the mean o2 of the
distribution and one additional free parameter. This re-
maining free parameter 1is the reciprocal of the relative
variance of oy — i.e.,

(02)°
v = { ZY_? 2} (2.21a)
E (oy—oy)

_ L (2.21b)
~ Relative variance of 0;

Thus, when y = o, the density described by Eg. (2.20)

approaches a delta function located at o2 = gg. On the other

hand, when y = 1, Eq. (2.20) describes the expdbnential proba-
bility density. For large finite wvalues of vy, it can be shown
that Eq. (2.20) approaches a Gaussian density in the neighbor-

hood of ¢2 = g2.
y y
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In Fig. 7, the gamma probability density is shown plotted
in the usual manner for several values of the parameter y —
see, for example, pp. 248 and 404 of Ref. 32. However, we
have used our notation of Eq. (2.20) in describing the abscissa
and ordinate in Flig. 7. When plotted as a function of the

normalized variable of ¢2%2/02 that is "natural" to the gamma
density as described by Eq.  (2.20), we obtain the behavior
shown in Fig. 8. Notice that each density function shown in
Fig. 8 has the same mean value, and that Fig. 8 shows the
relative variance 1/y shrinking as y increases — as we have
described above. In the limit y - <« p(0§) approaches a Dirac

delta function located at 0§ = og. Figure 8 displays Eq.
e p

(2.20) in the form relevant to t resent work — the plots
shown in Fig. 7 are included only for comparison with the
gamma density as it is usually shown. From Fig. 8, we can see
that the gamma density function of Eq. (2.20) encompasses a
nice range of shapes to model the probability density of o3
for purposes of studying the accuracy of the two-term expanh-
sion of p(y) given by Eqg. (2.13). Fortunately, the exact
density function p(y) also can be evaluated in closed form
when the gamma density of Eg. (2.20) is substituted into

Eq. (2.19¢c) and the integration carried out.

When Egs. (2.19c¢) and (2.20) are combined, it is shown
in Appendix B that we may express the resulting probability
density in terms of the normalized response variable

nd (2.22)
Vo
y
as
A J—?
pY(n) p(y/ oy)
vay/m iy
TV SO (/Wlnl)v IZK_;(/E—Y-[TII) s (2.23)
2Y 21-|(.Y) Y 2
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where Kp(+) 1s the modified Bessel function of the second kind
or order n. For n = 1/2, 3/2, 5/2,..., these Bessel functions
can be expressed in closed form in terms of elementary func-
tions. Therefore, whenever y is a positive integer, it follows
from Eq. (2.23) that py(n) can be expressed in closed form in
terms of elementary functions. Kp(+*) for n = 1/2, 3/2,
5/2,..., 19/2 are developed in Appendix C along with expres-
sions for pY(n) for vy = 1,2,4,8, and 9.

Plots of the probability density p(y/ c§) given by
Eqg. (2.23) and evaluated from the results in Appendix C are
shown in Figs. 9 to 12 for values of y of 1,2,4, and 8
respectively. To compare these results with those produced
by the two-term expansion of Eg. (2.13), we note first from
Egs. (2.5), (2.13), and (2.15), that our two-term approxima-
tion to p(y) can be expressed as

R ( (2) )
1 252 "oy b 2
p(y) = e Yyl o+ y_zz_ygz—6¥—7+3 , (2.24)
2WE§ 8(0y) (cy) o

where from Egs. (2.1la) and (2.2la), we see that the coeffi-
cient to the correction term may be expressed in terms of vy:

)

Qq o~
< oo

u

=< |

—— (2.25)
(oy)

Hence, when we introduce the normalized response variable of
Eqg. (2.22) our two-term series approximation of Egs. (2.13)
and (2.24) becomes

p(y/Jgg)

- n-
L. [1 - (n~_6n2+3)] . (2.26)
i

p(n)

b2
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Plots of Eg. (2.26) are shown in Figs. 9 to 12 for compari-
son with the exact result given by Eq. (2.23). Also shown in
each figure is the Gaussian approximation to the density
function — i.e., the first term in Eq. (2.26). Examination
of Figs. 9 to 12 shows that the two-term approximation of
Eq. (2.26) provides marginal results for y = 1, good results
for y = 2, and for vy = 4 and larger, the approximation is
excellent.

We can express gamma in terms of the relative standard
deviation of o§ — also called the coefficient of variation
[8, p. 357] — i.e., from Eq. (2.21) we have

2_2y2
~-¢E{(Oy oy) }
2

(2.27a)

2

o
y

coefficient of variation of 0§ . (2.27b)

Consequently, we see from Figs. 9 to 12 that when the coeffi-
etent of variation of the instantaneous mean-square response
oj(t) is unity, our two-term series approximation Eq. (2.24)
provides only marginal accuracy; when the coefficient variation
is (1/¥2) = 0.707 the accuracy is good, and when the coeffi-
etent variation of the instantaneous mean-square response is
(1/V/4) = 0.5 or less, the error involved in the two-term
approximation Eq. (2.24) is, for practical purposes, negligible.

We remind the reader that the probability density function

of 02/0§ used to generate the results of Figs. 9 to 12 are
disp{ayed in Fig. 8. Thus, for all but extremely strong
variations in oZ(t), the two-term expansion, Eqg. (2.24) will
provide excelleht results. To illustrate the excellent fit
of Eq. (2.24) in the tails of the probability density of

p(y/l 5§> the same curves shown in Figs. 9 to 12 are plotted
in Figs. 13 to 16 on semi-logarithmic coordinates.

Relationship for Expansion Coefficient of
Correction Term to the Gaussian Density
: Let us turn now to obtaining a general relationship for
uég) for cases where no locally stationary assumptions are
reauired other than that described by Eqg. (1.8) — which
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depends only on properties of the turbulence. Thus, the
results to follow will be valid for aircraft impulse response
functions of arbitrary long duration — and, therefore, for
supersonic as well as subsonilic aircraft. First, we shall
obtain a general expression for the mean-square aircraft
response.

General expression for mean-square aircraft responge.
Equation (1.11) is the general input-response relationship
for spectra, where ®4(f) is the two-sided power spectral
density of the turbulence, H(f) is the aircraft complex fre-
quency response function, and o,(f) is the aircraft response
power spectral density. The aircraft mean-square response
is obtained by integrating Eg. (1.11) over —=<f<wo;

E{y?} = 53 = j o (f) [H(£)]|® af . (2.28)
The bar over o2 is required since E{y?} = gg-is the uncondi-

tioned expecteg value of Eqg. (2.4).

From the mutual statistical independence of the processes
{wg(t)}, {op(t)}, and {z(t)} in our model of Eg. (1.2), it
follows that the processes {wg(t)} and {we(t)} are independent.
Therefore, the power spectrum of {w(t)} is the sum of the
power spectra of {wg(t)} and {we(t)} — i.e.,

9 (f) = @ws(f) + @wf(f) . (2.29)

Substitution of Eq. (2.29) into Eg. (2.28) shows that the
mean-square alrcraft response is the sum of the mean-square

responses from the slow and fast turbulence components — i.e.,
E{y2} = 02 = g2 + 0% (2.30)
¥ Y e
where
oz = | e, (o) |u(e)|? ar (2.31)
y W ’ .
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T el

and

o2 = E{c2 (%)}, (2.32)
e e

where o§ (t) is the conditional mean-square aircraft response
f

to the fast turbulence component conditioned on the random

function og(t) as in Eq. (2.4) — i.e.,

o5 = oy (©) & E{y2(t)|op(u)}, -w<ust . (2.33)

General expression for second central moment of condi-
tional instantaneous mean-square resgsponse. Since the slow
turbulence component wg(t) is independent of op(t), it follows
from Egq. (2.4) that the conditional mean-square response U§

may be expressed as

c?2 = g2 + o2 , (2.345

where o2 1is the unconditioned mean-sgquare response to the
s
slow component wg(t) given by Eg. (2.31), and o§f is the con-

ditional mean-square response to the fast component defined by
Ea. (2.33). The second central moment of 0§ — defined by
Egq. (2.11) for k = 2 — therefore can be expressed as

w8 L E((02-07)2) (2.35a)
y
- 2 2 _ 2 42 y72 2 .35p
E{[(oys+oyf) (oys+oyf)] } (2.35b)
= E{(02 -02 )2} (2.35¢)
Yp Jp

where we have introduced Eq. (2.34) in the second line and
have used the fact that 0§ is not a random variable. We see
S
(2)
°
response to the fast turbulence component.

from Eg. (2.35c) that p depends only on the aircraft
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Furthermore, we see from Eq. (2.24) that the overall co-
efficient of the correction ferm to the Gaussian approximation
of the response density function is proportional to

w3 El(e2 07 )%}

y . 't ¢ (2.36)
o2 62 +g2 ’

y Vo Vg

according to Egs. (2.30) and (2.35c¢). Hence, ( )/o

creases as the mean-~-square resgponse o§ to the s{ow

turbulence component is increased. Thgs behavior is in
agreement with intuition, since the response to the slow
component wg(t) is assumed to be Gaussian; therefore, the
magnitude of the correction to the Gaussian response term
decreases as the fraction of the response in the Gaussian
component increases.

Series expansion of conditional instantaneous mean-square

response. A series of developments in Refs. 34, 18, and 19
has lead to a series expansion for the conditional instantane-
ous power spectrum of the "fast" component we(t) = op(t) z(t)

of our turbulence model. This expansion is given on p. 23
of Ref. 19 as

@é“)(f) + Ry, (£,8) , (2.37)

N+1

where ®( )(f) is defined as the nth derivative of the power
spectral density ¢,(f) of {z(t)} — i.e.

n

(n) A d
@Z (r) = g;ﬁ ®Z(f) (2.38)
— and where
(0) _
9, ' (f) = o (f) . (2.39)
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The coefficients an(t) in Eq. (2.37) may be expressed in terms
of the derivatives of op(t) by

n dkof(t) an-k

(6) = —=— <—1)k<“)
T P kzo ko atk at

of(t)
n-k

, (2.40)

where

n nl!
= e 2|L|'
(k) (n-k) k! (2.41)

are the binomial coefficients, and where we remind the reader
that the conditioning on the random intensity op(t) indicated
by the left-hand side of Eg. (2.37) implies that op(t) in

Eq. (2.40) and the a,(t) are to be treated as known functions.
From Eq. (2.40), one may show that for odd integer values of
n, we have

an(t) =0 , n =odd . (2.42)

Expressions for the remainder term Ry+1(f,t) in Eqg. (2.37) are
given by Eqs. (4.7) and (4.13) on pp. 27 and 29 of Ref. 18.
The first two nonvanishing terms an(t) can be expressed as

a,(t) = o2(¢) (2.43)
and
1 d22nof(t)
a,(t) = - — O%(t) S (2.443q)
82 dt?

1 dzzn[o§(t)]

1672

(2.44p)

c2(t)
f dt?

Hence, we may express the first two nonvanishing terms of the
series in Eq. (2.37) as
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dzznog(t)

0, (£.t]o,) = o;<t>[¢z<f> - ¢;2><f>]+h.. (2.45)

£ 3272 dt?

According to p. 26 of Ref. 19, we can express the condi-

tional instantaneous spectrum of the aircraft response to the
"fast" turbulence component we(t) as

- [7 i} (2.46)
@yf(f,t]gf) J @wf(f,t r]gf) ¢h(f,T) dr ,

-0

where 2,(f,t) is the instantaneous power spectrum [34] of the
alrcraft unit-impulse response of interest:

0, (r,8) = [ n(e-D) n(eh) 72T gr (2.47)

-_00

Substitution of Eqg. (2.46) into Eq. (2.37) gives — ignoring
the remainder term —

N o)
B 1 (n)
@yf(f,t|gf) = nZO = J a (t-1) ¢ "7 (f) ¢, (f,7) dr. (2.48)

— 0

To obtain an expression for the conditional instantaneous
mean-square response to the fast component we(t) as in
Eq. (2.33), we integrate ®y (f,t]gf) over all f:

f

02

e

2
g (t)
I e

E{yi(t)|op(u)} ,  -w=<u<t

J @yf(f,t|gf) ar

- 00

or
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o2 =02 (t) = ? L Jm a_(t- T)J (“)(f) o, (£,7)af dt
Yf - yf n=0 n! - .
N e
= nZo ﬁ—'J a (t-1) Yh,z,n(T) ar , (2.49)

- CO

where, in going to the third line, we have used Eqg. (2.48) and
have interchanged the order of integration, and in going to
the last line, we have used the definition

Yh,z,n") : J ¢;n)(f) e, (f,t) ar (2.50)

3

-0

which is a function of the nth derivative of the power spectral
density &5(f) of the turbulence component {z(t)} and the in-
stantaneous spectral density @h(f t) of the aircraft unit-
impulse response function h(t). The result of Eq. (2.49)
ignores the contribution of the remainder term Ry+1(f,t) in

Eq. (2.37). Equation (2.49) is the desired series expansion
for the conditiocnal instantaneous mean-square aircraft response
to the "fast" turbulence component we(t) = op(t) z(t).

Series expansion of second moment of conditional instan-
taneous mean- -square response. An expression for the coeffi-

(2)

client uO (o )2 of the correction term for the Gaussian

probablllty dens¢ty in Eq. (2.24) is given by Eq. (2.36),
where we see that the second central moment of ¢? 1is required.

b
We may obtain a series expansion for the second moment of o2
by taking the expected value of the square of Eqg. (2.49):

N N o ;o0
1
E{(02 )2}= z Z e E— J J E{a (t'—’l_' )a (t"—T )}
Yr n,=0 n,=0 n,tn,l! ) ) n, 177n, 2
2.
) Yhazanl(Tl) Yh,z,nz(Tz> dTlde s (2.51)

57



where the expectation is taken with respect to fluctuations

in the random function op(t), and where t has been replaced by
t!'. We are primarily interested in situations where the
random process {op(t)} is stationary. In these cases, we may
take t = t' - 1 ; hence,

E{anl(tv_rl) anz(t'-rz)} = E{anl(t) anz(t+Tl—T2)} (2.52)

which 1s independent of €.

Introduction of locally stationary assumption. Our main
interest in these developments is situatilions where the locally
stationary assumption of Eq. (1.8) is valid. From Egs. (1.8a)
and (2.43) through (2.45), we see that the locally stationary
assumption permits us to include only the term n = 0 in
Eq. (2.49) — i.e.,

o (t)
I

E{yZ(t)[op(u)} ~w<u<t

J O%(t—T) Yh’Z(T) dr , (2.53)

— OO0

where we have used Eq. (2.43) and the notation

Yh,z(t) = vy gz 0(t) = J o (r) o (f,t) df (2.54)

-_ 00

which follows from Eg. (2.50). The expected value of 0§

[with respect to fluctuations in of(t)] is £

O.Z

2
Yo 'E{Oyf(t)}

- oy .
= J o Yh,Z(T) at ;

e}
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hence, substituting the mean value of o§f(t), we have from

Egs. (2.53) and the above relationship,

2 2 _ ® 2 (4 _ ~2
0% (£) - o = | Togte-n) - oF1 v, ,(0) ar . (2.55)
According to Egs. (2.24) and (2.35c¢c) we reguire the
second central moment uég) which is given by the mean-square

value of Eqg. (2.55). Ho%ever, the right-hand side of Eq.

(2.55) is the convolution of [c?(t) - Gf] and yvp,p(t) — 1.e.
Egq. (2.55) may be thought of as describing the response of a
linear two-terminal time-invariant system with unit-impulse

response Y »(t) to the stochastic input [of(t) - Of] Thus,
we may expréss the power spectral density & G2 (f) of the pro—
yf

cess {G§f(t) - oy } as the product of the power spectral den-—

. 2
sith @0%(f) of {oa(t) - of} and |Yh,z(f)| , where

2
ne>

J Yhsz(t) elZﬂvt at (2.56)

- 00

is the (inverse) Fourier transform of the "system impulse
response" Yy, Z(t):
>

8 o, (£) = 0 ,(f) |y, _(£)]% . (2.57)
o] Op h,z
Y
The mean-square value of {o§ (t) - G§ } which, according to
Egq. (2.35¢c) is the second central moment U(z) is obtained by
Oy
integrating Eq. (2.57) over all f:
(2) _ ® iy 2 . (2.58>
u0§ = @O%(f> |Yh,z(f>| ar
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Equations (2.28) and (2.58) are the required relation-

ships for evaluation of the coefficient ugﬁ)/(ég}z of the

the correction term that occurs in Eq. (2.24) to the Gaussian
probability density function of the aircraft response y(t).
The turbulence characterizations required for evaluation of

7 (2)

o’ and Hg2 are the power spectral density ©,(f) of the tur-

bulence velocity {w(t)} and the power spectral density ®02(f)

of {0%(#) - 0%}, where op(t) is the intensity modulation F
in the fast component wel(t) given by Eq. (1.3). Methods for
computing ®02(f) from turbulence recordings are described on

pp. 79-83 of Ref. 19. The quantity ?h L (F) s defined by
Eqs. (2.54) and (2.566). Notice that ?h z(f) depends both on

the power spectral density 0,(f) of the turbulence component
{z(¢t)} and on the aircraft unit-impulse response function as
may be seen from Eq. (2.47). Thus, ?h Z(f) or vy 5 () char-

acterizes the aircraft impulse response with respect to the
turbulence component {z(t)}. The loecally stationary assump-
tion of Eq. (1.8) has been used in deriving Eq. (2.58).

Alternative form for system characterization. QGenerallz-
ing the definition of Eg. (2.56) to include Yh . 2 rl(t) — which
is defined by Eg. (2.50) — we have 272
Y (v) = JMY (t) eT?™F 44

h,Z,I’l h,Z,I’l
— Q0
- j j @én)(f) o, (£,t) ar|et®™? gt
-0 -0
(e} ( ) o .2
J 0, (f)[J o, (f,t) e TVt dt] ar . (2.59)
-0 -0

However, using Eg. (35b) on p. 29 of Ref. 34:
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j 2, (£,) cl2mvt 4

Qo0

5h(f,v>

H(f-3) H¥(£+3) , (2.60)

where H(f) is the complex frequency response defined by
Eg. (1.9), we have from Egs. (2.59) and (2.60)

;h,z,n(V) = J ¢;n)(f) H(f-%) H¥(f+3) df. (2.61)

—00

The special case of Eg. (2.61) for use in Eq. (2.58) is

Yh,z(V) = J o_(f) H(f-3) HX(f+3) af , (2.62)

which is the desired alternative form of ?h Z(v) for use in
5

Egq. (2.58). Equation (2.62) may be interpreted with the aid
of the material contained in Sec. 4 of Ref. 34,

Limiting Cases of Expansion Coefficients of the
NonGaussian Term
Limiting cases of the central result, Eq. (2.58), provide

insight into that result. Three limiting cases are discussed
below.

Case 1: we(t) is stationary and Gaussian. Since the
process {z(t)} in our model of Eq. (1.3) is stationary and
Gaussian, the "fast" turbulence component {we(t)} is stationary
and Gaussian when

Gf(t) = constant = 5; . (2.63)

In this case, the power spectrum ®Oz(f) of the random process

{oé(t) - ;?} is zero. Therefore, agcording to Eq. (2.58),
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uég) is zero, and according to Eqg. (2.24), the probability

de%sity of the aircraft response y(t) is Gaussian.

Case 2: power spectrum of {z(t)} is white. This case
is of little direct interest for the representation of tur-
bulence since {z(t)} would normally be taken to have the
appropriate (transverse or longitudinal) von Karman spectral
form. Nevertheless, it is of general interest as a limiting
case in the study of Eg. (2.58). For this case, we have

@Z(f) = constant = @Z(-) . (2.64)

Using Eq. (2.64), we have from Eqg. (2.54):

0, (+) J 0, (£,8) af

- 00

Yh,z(t)

1t

e () n*(t) , (2.65)

where, in going to the second line, we have used Eg. (12a) on
p. 26 of Ref. 34 applied to the aircraft unit-impulse response
h(t). Therefore, according to Eg. (2.56), we have for the
present case

?h L(v) = ¢ (+) J n2(t) e°m™t gt (2.66)

- 00

which is the (inverse) Fourier transform of h?(t) multiplied
by the constant spectral density @Z(-).

Equation (2.66) may be used directly in Eq. (2.58) to
(2)

evaluate u'3’. Alternatively, we may define the "autocorrela-

y
tion function" of the square of the (deterministic) unit-

impulse response h(t) as

¢y2 (1) & J h?(t) h?(t+1) dt (2.67)

- OO
which is necessarily an even function of 1. Using Weiner's

theorem — e.g., Eq. (135) on p. 54 of Ref. 34 — we then have
from Egs. (2.66) and (2.67),
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1,012 = 82(+) j 6,2(T) eT°™T g | (2.68)

-0

(2)
oy
h?(t) is a nonnegative function. Therefore, for reasonably
well behaved h(t), the main contribution to ¥y _y(v) will be

in the region about the origin v = 0, and the Aominal bandwidth
of ¥}, z(v)|? will be of the order of the reciprocal of the
nomindl duration of h(t). Therefore, this same low-frequency
region of the spectrum @Gé(v) is relevant in the computation

(g)
Oy

which may be used to evaluate y by Eq. (2.58). Notice that

of u by Eq. (2.58).

Case 3: fluctuations in op(t) are negligible over the
duration of h(t). When fluctuagions in the intensity modula-
tion op(t) occur sufficiently slowly, the power spectral

density of {c’(t) - E?} has all of its area concentrated near
zero frequency. The limiting case in this situation is

— 2 2y2
®0%(v) = E{(og-05)*} 8(v) (2.69)
where §(v) is the Dirac delta function located at v = 0. Sub -

stitution of Eq. (2.69) into Eq. (2.58) yields

= El(o3-00)2) | s [¥, ()] av

= BL(03-02)%} |7, ,(0)]2 . (2.70)

However, from Eq. (2.62) it follows directly that

Yh,z(0) = I o (f) |H(£)[? af , (2.71)

- 00
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which is real; hence, Egs. (2.70) and (2.71) yield

S~

- E{(of-@ﬂ[] o (£) |H(E) |2 ag| (2.72)

- 00

which i1s the desired result.

From Eq. (2.71), we recognize Yy 5(0) as the mean-square
response of the aircraft to the turbulence component {z(t)}.
When Eq. (2.72) is combined with Eq. (2.24), we see that the
resulting expression for the probability density function of
the aireraft response is identical with that given by Egs.
(4.50) and (4.51) on p. 48 of Ref. 19. These results were
derived under the assumptions that (i) fluctuations in op(t)
occur slowly in comparison with those of z(t), and (ii) varia-
tions in op(t) are negligible over durations comparable with
the aircraft impulse response duration. The more general
result of Eq. (2.58) relaxes, completely, the requirements for
assumption (ii). However, assumption (1) — which is described
by Eq. (1.8) of this report — has been used in obtaining
Eq. (2.58). We again emphasize that the assumption of Eq.
(1.8) depends on turbulence properties alone and is believed
to be generally satisfied by atmospheric turbulence.

Series Representation of Expansion Coefficient
of the NonGaussian Term

The limiting case of Egs. (2.70) — (2.72) suggests a
(2
2
9y
where assumption (ii) above i1s almost or only marginally
satisfied. Equation (2.70) depends on the frequency content
of|\7h Z(\))|2 only at v 0. This fact suggests a series
’ (2) ~
0,32/' IYh,Z

in a Maclaurin series and then integrating term by term.

series expansion for u ) that may be useful in situations

representation of u obtained by first expanding (v)|?

The Maclaurin expansion of ]?h Z(v)|2 may be expressed as
3
© n g0
> 2 - v ~ 2
IYh,Z(v)I Z Y = lyh,z(v)l (2.73)
n=0 dv v=0
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By Leilbniz's rule for the nth derivative of a product (p. 111
of Ref. 35), we have

a" | a"
L O - [v* (DT, (v)
d\)1’1 h,z dvn h,z h,z
k~* n-k-
ooy th,z(V) d Yh’z(\))
= 1 Ak K n-k (2.74)
k=0 dv dv
However, from Eq. (2.62), we have
K-~
ay (v) o k
——Jl%%——— = J o _(f) Q—E [H(f - ZIHE(E + %)} ar
dv v=0 - LAY v=0
= (12m)¥ J @Z(f)mék)(f)df, (2.75)

-0

where we have used Eq. (79) on p. 269 of Ref. 36 as applied
to the deterministic (complex) function H(f), and where

mhk)(f) is the kth power-moment spectrum of the aircraft unit-
impulse response function h(t). Properties of power-moments
spectra are discussed on pp. 264-269 and 281-288 of Ref. 36.
Their name arises from the fact that their integrals over
~o<f'<o gatisfy

f n¥) (£)are = f t¥n%(£)at, k=0,1,2,..., (2.76)

—00 -0

where the right-hand side of Eq. (2.76) may be interpreted as
the kth time-moment of the instantaneous "power" h?(t) of

h(t). Furthermore, the power-moments spectra mék)(f) are real
and even functions of the frequency variable f. PFrom Eqg.
(2.75), we also have
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d™yE _(v) ®
h’i = (-i2m)¥ J @Z(f)mék)(f)df . (2.77)
dv v=0 i
Let us define
ré?; 4 ( @Z(f)mék)(f)df . (2.78)

o o]

Then combining Egs. (2.74), (2.76), (2.77), and (2.78), it
follows that

at o). _ .o n o kX (n\ (k) .(n-k)
th,z<V>lzJV=O = (i2m) k£O<_l> (k) Fh,z Fh,z . (2.79)

() _ ¥ Lr" (12793 - (w3
“0§ nZO = ) i o%
v K (n) (k) (n-k)
) kzo (-1 (k) Fh,z T,z . (2.80)

However, the autocorrelation function ¢02(t) of the random

f
process {c%(t) - ET} is the inverse Fourier transform of the
power spectrum @Ozfv) — i.e.,
f
b 2(t) = f o 5 (v)et?™ gy | (2.81)
O I

Differentiating both sides of Eg. (2.81) n times with respect
to t yields
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n

¢§f§>(t> 4 diigﬁ g2 (0)
- [m (127v)" @G%(v)ei2ﬂvtdv5 (2.82)
hence,
620y = fw (1219)7 8, (v)dv . (2.83)
£ ! f
Let us define
sé?; a kzO (-1)¥ (i) ré?; réf;k) . (2.84)

Combining Eqgs. (2.80), (2.83), and (2.84) we have, finally,

Y

N

N
Ne~18

1 (n) (n
. 0 ¢G§ (0) Sn,z R (2.85)

(2)

which is the desired series expansion of uoz

The power-moments spectra are defined on p. 260 of Ref.
36 as

mék)(f) A J t%e, (r,t)at, k=0,1,2,... . (2.86)

-0

Hence, by forming the kth moment of Yh,z(t) and using Eq.

(2.54), we see that F(k)

h,z and Yh,z(t) are related by

(k

h,z (2.87)

[oe] o0 o
K K
= o a =T
f vy, g (B)at [ @ (f) ! £, (£,t)dtdf

=00 - 00 -0
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where Egs. (2.86) and (2.78) have been used in the second

(k

equality. According to Eq. (2.87), T is the kth moment

with respect to time of Yy, Z(t). h,z
]
Discussion. The terms in Eq. (2.85) for odd values of n
are identically zero. To show this, we show that s(nz =0

h,z
for n = odd. Consider Eg. (2.8L4) and let k' = n-k; hence,
k = n-k'. Therefore,

<E> ) (n—i;!k! ) (k')!?;—k')! _(EJ ' =

Consequently, we may express the summation in Eq. (2.84) as

(n) _ & n-k' (n (n-k') (k")
Sh,Z - k'ZZO (-1) (k') Th,Z Fh,Z b
_ n = k' (n (k') .(n-k')"
= (D" 1D (h) res) e{ng< (2.89)

Comparison of Egs. (2.84) and (2.89) shows that

i) = P sl (2.90)

3 2

from which 1t follows that

s(n) =0

h,z , n=1,3,5,... . (2.91)

Therefore, the odd numbered terms in the summation of Eq.
(2.85) are identically zero.

It is instructive to consider the first two nonvanishing
terms of Eq. (2.85). For n = 0, it follows directly from the
definition of the autocorrelation function that

HI

¢§%)<o> 02(0) = BU[o(8)-071%) . (2.92)
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Furthermore, one may show [e.g., p. 21 of Ref. 37] that

¢§§>(0) - -E{[g% o;(t)Jz} : (2.93)

which is the negative of the mean-square velocity of o (t)
In addition, we have from Eq. (2.84),

(o) _ (0)
Sh,z II|lr1,z (2.94a)
o o 2
_ [f o (£) J @h(f,t)dtdil
Sy 2
= [f @Z(f)jH(f)lzdf} s (2.94b)

according to Eq. (2.87) above and Eq. (12a) on p. 26 of Ref.
34. TFurthermore, from Eq. (2.84) we also have

J(2) _ p(0) L(2) _ 2(P<1>> p(2) (0
h Z h Z h Z h,z h Z h z
(2) (LY
_ (0)\2 Fh,z Fh,z
= 2(rh,z) S ) : (2.95)
h,z h,z

According to Egs. (2.91), (2.9%a), and (2.95), the first non-
zero terms of Eq. (2.85) therefore can be expressed as

(2)
(2) (0) (0) boz (O I pf2) él; 2 y
y £ ¢c§ (0) Ph,z h 7

From Eqs. (2.92) and (2.94), we see that the first term in

Eq. (2.96) is identical to the limiting case of u( ) given
y
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by Eq. (2.72), which applies to situations where variations
in op(t) "are negligible over durations comparable with the
alrcraft impulse response duration.

We consider, now, the second term in the right-hand
side of Eq. (2.96). Using Eq. (2.87), we see that

2

co o]
2 J' 2 J
r(2) r(1) t Yh’z(t)dt tYh’Z(t)dt
hSZ - h)Z - - _ - CO
F(0) 11(0) oo oo
nz  \'n,z [ v, (e2at [, a(0as
N2
[ @y, oa
= = , (2.97)
® (t)dt
f Yh,z
where
f tyh,z(t)dt
t=tf 8= (2.98)
. ” (t)at
€
f Yh,z
-0
is the time-centroid of Yy ,(t). The equivalence of the two

right-hand sides of Eq. (2297) is easily proved by expanding
(t-t)? in the second line and using Eq. (2.98). Thus, Eq.
(2.97) represents the second central moment of the normalized
"mass density" Yh,z(t) which 1s analogous to the standard

deviation of the "density function" Yh Z(t).
b

It is shown on pp. 100-101 of Ref. 19 [Eq. (A.18) in
(9 0y/0 2 (0)7

0% o2
one-~third of the nominal correlation interval of the process

1
2

particular] that the quantity [-¢ 1s about

iy

{0%(t) - g?}. Consequently, we have
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1
i

r(2) r(1))\?
f h,z _ h Z -
(0) (0) (oT -
(0) I'h,z h Z
"nominal duration" of Yy (t)
,Z
— > (2.99)
"ecorrelation interval' of {G%(t) - 0%}
where, here, the sign X should be read as "is of the order of,"

and where we have considered the "nominal duration” of vyp, Z(t)
to be about three times the duration of Yh, -(t) as measured by
the square-root of its second central momeit. Consequently,
when the correlation interval of the random process

{G%(f) - gg} is large in comparison with the nominal duration
of Yh, ,(t), the second term in the right-hand note of Eq.
(2. 96) is negligible and the approximation to u( )

Eq. (2.72) is adequate. Moreover, we see from Eqs (2.72),
(2.96), and (2.99), that the approximation Eq. (2.72) will
(2)

y

Finally, to obtain a physical understanding of the dura-
tion of Yh, 5 (t) we consider the case where the power spectrum
of the proless {z(t)} is white — i.e., @ S(F) = 0,(+) =
constant. In this case, we see from Eg. (2 65) that

given by

tend to overestimate the positive quantity My

Z(t) = ®Z(')h2(t); (2.100)

hence, when %,(f) is a constant over the "passband" of h(
the above statements pertaining to the duration of Yh,z(t
can be interpreted as pertaining to the duration of h4(t).

t),
)

In cases where the mean-square velocity of the process
{c#(t)} does not exist, |¢é§)(0)| does not exist as may be
seen from Eq. (2.93), and the series expansion Eg. (2.85) and
the two-term approximation Eq. (2.96) are of little use. An

(2)

y
This alternative expansion has the advantage that the first

alternative series expansion of My is derived in Appendix D.
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(2)
o
(2.72) does not require the existence of the mean-square
velocity of the process {0%(t)}. The alternative expansion
derived in Appendilix D also is more amenable fo calculations
based on numerical estimation of the power spectrum and auto-
correlation function of {cé(t)} than the expansion, Eq. (2.85).

correction term fo the limiting case of u given by Eq.

In this sectilion, we have provided a detailed methodology
for estimating the aircraft response probability density
function from appropriate characterizations of the turbulence
excitation. Comparable techniques are developed in Sec. 6
for threshold mean exceedance rates of the aircraft response.
For cases where fluctuations in oge(t) in our turbulence model
of Egs. (1.2) and (1.3) are negligible over durations compar-
able with the duration of the ailrcraft impulse response h(t),
expressions for mean exceedance rates provided on pp. 36 to
b6 of Ref. 19 are applicable.
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MAXIMUM LIKELIHOOD ESTIMATION OF THE INTEGRAL SCALE AND
INTENSITY OF von KARMAN TURBULENCE

Here, we shall derive an optimum method for estimation
of the integral scale and intensity of a well-behaved turbu-
lence record with no appreciable low-frequency component
ws(t) present. The vertical time history shown in Fig. 17
illustrates such a record. To develop the method, we shall
assume that the functional form of the power spectrum of
the record is known — e.g., the transverse or longitudinal
von Karman spectral forms. The problem, then, is to develop
an optimal method for estimating the parameters that deter-
mine the spectrum. In the case of the above two von Karman
forms, two parameters — the integral scale L and intensity
0 — completely determine the spectrum. Several ad hoec
methods for estimating values of the integral scale are
described on pp. 356 to 360 of Ref. 22.

The method derived below is based on the intuitively
appealing procedure called the method of maximum likelihood -
e.g., Ref. 38 — which was orginally introduced by Gauss.

This methed is usually treated in the context of optimal
estimation of the parameters — e.g., mean and variance — of
a probability density of known functional form from a random
sample "drawn" from the density. As we show below, it also
may be used to estimate the parameters L and o of a turbu-
lence record whose power spectrum is of known functional
form.

Maximum Likelihood Estimation of the Parameter
in a Probability Density Function

Let us first briefly review the method in its usual
context. Let p(xle) be the probability density of a random
variable x, where 6 i1s a parameter in the density function,
such as the mean value. Let X,,X,,...,X_ be n samples drawn
from the population whose probability density is governed
by p(x[6). The likelihood function is defined as

n
L(X,,X,5. 05X 8) = I p(x;|e) , (3.1)
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which is a function of the n sample values X,;,X2,...,Xy and
8, where the functional form p(xle), considered as a function
of x and 6, 1s assumed known. The problem is to determine
the "best estimate" of the unknown parameter 6 from the n

sample values X;,X,,...,%X4. When 6 is assumed known, the
right-hand side of Eq. (3.1) is the joint probability density
of the sample Xi,X2,...,Xpn. The method of maximum likelihood

assumes that when 6 is unknown, the "most 1likely" value of 8
is the value that maximizes the probability of the observed
sample. That is, when X;,X2,...,Xn are substituted into the
right-hand side of Eg. (3.1), the "most likely" value of ©

is the value that yields a maximum value of L(Xi,X»,...,Xn|6).
Generally, it is most convenient to maximize log
L(X1,X2,...,Xn|®) rather than L itself. Thus, the "most
likely" wvalue of © 1s obtained by solving the eqguation

OL(X1,X2,...,X
30

0

=0 . (3.2)

When more than one solution to Eg. (3.2) exists, the solution
chosen is the one that maximizes L when substituted back

into L(X ,X ,...,X, ). Equation (3.2) is referred to as a
likelihood equation. For Eg. (3.2) to yield a maximum, it

is necessary that (92L/062)<0 at the value of 6 determined

by Eq. (3.2).

Joint Probability Density of Unsmoothed Turbulence Spectra

Let us turn now to the problem of estimating the in-
tegral scale and intensity from a recorded turbulence time
history such as the vertical record shown in Fig. 17 which
exhibits no discernible slow component w_(t). To begin
with, we shall assume that the record is“a time history
of finite duration drawn from a stationary Gaussian process;
later, we shall argue that the final result is not parti-
cularly sensitive to the stationary assumption. Furthermore,
we shall assume that the duration T of the record is suf-
ficiently large so that no appreciable bias distortion of
its spectrum is caused by operating only with a finite seg-
ment of T secs duration. That is, we shall assume that for
appropriate (unknown) choices of integral scale and intensity,
the expected value of the power spectrum of our finite seg-
ment of duration T is equal to the actual power spectrum of
a record of infinite duration.
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FIG. 17. LOW-ALTITUDE TURBULENCE RECORDS UNDER CONVECTIVE
CONDITIONS. [AIRCRAFT SPEED 129 m/sec (422 ft/sec).]
(Ref. 23, Fig. 4, p. 282.)
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The problem, then, is to estimate L and 0% from a segment
T secs long drawn from a stationary Gaussian process. The
power spectral density of the process is of known functional
form, and is determined by the two parameters L and o?2.
Our interest, of course, is to determine the values of L and
0% for the underlying process from which our finite sample
has been drawn. Thus, we must consider the statistical
properties of a conceptual ensemble of stationary Gaussian
segments T secs long that are drawn from the underlying
process.

From each such segment, we first generate, conceptually,
a periodic function by repeating our T sec segment end-on-end.
That is, 1f we denote a typical Gaussian segment by w(t),
- g§t<g, then from each such segment we generate a periocdic
function satisfying

w(t+pT) = w(t) , p=0,%¥1,22,... . (3.3)

Since each such function in our new ensemble is periodic with
pericd T, we may conslder the statistics of its complex
Fourier series coefficients ¢, n=0,%¥1,*¥2,... which are the
complex amplitudes of the Fourler series components occurring
at frequencies of f=n/T, n=0,1,2,... — i.e.,

- T i2mnt/T
w(t) = ngéw °n © R (3.4)
where
T/2
c = % w(t) e~ 1emnt/T 44 (3.5a)
-T/2
= an -1 bn . (3.5b)

where a, and by, are real. First, we note that since the
original process w(t) is Gaussian, the complex Fourier co-
efficients ¢y must be jolntly Gausslan complex variables
since the operation on w(t) described by Eq. (3.5a) 1is a
linear transformation. In particular, for a given value of
n, the probability density of the real and lmaglnary parts
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ap and b, of the complex coefficients c¢p must be governed by
a joint normal probability density on the phase plane.
Furthermore, since the original process w(t) is stationary,
there can be no preference between the cosine and silne com-
ponents a, and by; that is, for every harmonic n, the sta-
tionary property of w(t) requires that the joint probabllity
density of the cosine and sine coefficients on the phase
plane be rotationallv invariant. It follows that a, and b,
must be uncorrelated and that each is governed by a normal
probability density with the same mean value of zero and
variance of, say, oﬁ/2. For a discussion of the bivariate
normal density, see, for example, pp. 147 and 148 of Daven-
port and Root [39].

Consider, now, the Fourier transform of a typical tur-
bulence segment — which we now defined to be zero outside
the interval (-T/2)<t<(T/2). From the sampling theorem in
the frequency domain — e.g., p. 33 of Woodward [40] — we
see that at the values of fy = £tn/T described above, the
Fourier transform of our turbulence segment 1s T times the
values of the complex Fourier series coefficients c,. This
fact also is immediately evident from Eq. (3.5a). Further-
more, we see from the same sampling theorem that the Fourier
transform of our truncated segment is completely determined
by the complex coefficients c,, n=0,21,%2,...

Consider, now, the statistical propertiles of an estimate
of the power spectral density of the turbulence process, where
the estimate is the so-called periodogram defined as

s(r) &

Hi=

T/2 . 2

' J w(t) e 12Tt g (3.6)
-T/2

— e.g., p. 107 of Davenport and Root [39]. At frequencies

fn = n/T, S(f) is related to the Fourler series coefficients
of Eq. (3.5) by

S(fn) = 8

L
T

— 2
Te | = T]cnl

n

T[a;+bé] , n=1,2,... . (3.7)
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According to the above comments, an and b, are independent,
and each is governed by a normal probability density with
zero mean and variance pﬁ/2. Hence, the random variable

Aa2+b

1 £a?+p? - (3.8)

is governed by the exponential probability density function

~I_/p2
1 nn , I_>0
2 n
pn
p(In) =
0 , I,<0 (3.9)

as is shown, for example, on p. 53 of Lawson and Uhlenbeck
[41], who, incidentally, incorrectly refer to the density
of Eq. (3.9) as a Rayleigh density. It follows from Egs.
(3.7) to (3.9) that values of S, also are governed by an
exponential density function, say,

“A.S,
A e 1 S >0
n_

0 » 8,<0 (3.10)

where A, = 1/(Tpj). Finally, we note that the random vari-
ables S,, n = 0,1,2,... are mutually independent since the
real and imaginary parts of the complex Fourier series co-
efficients cp, from which the Sy are generated, are uncor-
related Gaussian variates. A proof of the fact that all
pairs of random variables a,, ap, n#m; bp, by, n#m; and ap,
bm, a1l n,m, are uncorrelated for n, m>0 is provided in
Appendix E. Also see p. 119 of Goldman [42].

Our original time segment w(t), (-T/2)<t<(T/2) from
which S(f) is generated by Egq. (3.6) can be reconstructed
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from its complex Fourier series coefficients cp = a,-iby,
n=0,1,2,... . However, we have shown above that for all

m, n>0, all nonidentical pairs of ap and by are statistically
independent. Furthermore, the random variables ap and b,
both are governed by a normal probability density with zero
mean and the same variance (p3/2) = (1/2A,T), which is
uniquely determined by A,, n = 0,1,2,... and T. Consequently,
all statistical information about a segment of w(t),
(-T/2)<t<(T/2), is contained in the sequence of coefficients
Apn, n = 0,1,2,... . It follows that the sequence of pro-
bability densities p(Sy), n = 0,1,2..., given by Eq. (3.10)
must contain all possible statistical information about the
periodogram S(f) defined by Eq. (3.6) since it provides a
complete statistical description of the random process w(t),
(-T/2)<t<(T/2), from which S(f) is generated.

Since all S, are independent for n>0, the joint pro-
bability density function of the "vector random variable!
{S,5S,5---55n} is

N .S,
I A, e 99 8,20, j=1,2,...,N

0 , sj<o, j=1,2,...,N
(3.11)

where we have used Eq. (3.10), and where N can, in principle,
be infinity. Finally, we note that A; is the reciprocal of
the expected value of Sj — as 1s easiiy shown in Eg. (3.10):

A, = —2 , §=1,2,...,N . (3.12)

J
E{Sj}

Equation (3.11) is the joint probability density func-
tion of samples Sj of the periodogram defined by Eq. (3.6)
at frequency values of

fj = 3j/T , j=1,2,...,N , (3.13)
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where the periodogram samples taken at the frequencies de-
fined by Eq. (3.13) contain all of the information in the
periodogram. Equation (3.13) relates the A; in Eg. (3.11)
to the expected values of the unsmoothed power spectral
density samples Sj = S(fj).

Likelihood Equations for a General Class
of Turbulence Spectra

We may rewrite Eg. (3.11) as

s S e-(xlsl+xzsz+...+ANsN)
. g Ay ,

(3.14)

where, for convenlience, we have left out the statement that
the right-hand side is valid only for 3:>0, j = 1,2,...,N.
The logarithm to the base e of Eq. (3.1%7 is

p(Sl,Sz,...,S

ln[p(Sl,Sz,...,SN)] =

[2an(r d, e AT = DA 8 #A,8 e 4 Sy ]

=

; L B S, S, S
= -l[zn(slsz...sN)] + g— + g— +o..+ , (3.15)
1 2 N

2

where, in going to the last line, we have used Eq. (3.12)
and the notation

S, = ) j = e . .
; E{SJ} , j=1,2, ,N (3.16)

Let us now introduce a class of power spectrum func-
tional forms

E{Sj} = S o?L Fj(L) , J=1,2,...,N , (3.17)

J
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where ¢ is the rms value of the turbulence, L is the integral
scale, and for a given frequency index J, Fi(L) is a function
of L but is independent of o¢. Equation (3.17) includes the

(two-sided) von Karman transverse and longitudinal spectra —
e.g., pp. 83 and 93 of Ref. 18 —

_ 2 1+188.75 L2%k?
@KT(k) = g*L

[1+70.78L2K2]1/e (3.18)
= g2 2
opp (k) = o?L iToTeii T (3.19)

where we have used wavenumber k instead of frequency f as is
conventional in turbulence work. According to Egs. (3.17)
to (3.19), for the von Karman transverse spectrum, we have

1+188.75 L2%k?
Fo(L) = J

Y s (3.20)
[1+7O.78L2k§]” 6
and for the vown Karman longitudinal spectrum, we have

P (L) = 2 . (3.21)
J [1+70.78L2k3]%/¢

In fact, 1t 1s easy to show that all spectral forms depending

on a single integral scale parameter L must take the form
of Eq. (3.17).

When Eq. (3.17) is substituted into Eq. (3.15), we have

ln[p(Sl,Sz,...,SN)] =

- Janf(o?)N B (L) F,(L)...Fy(1)]

S S S
L - N]
oL | F, (L) F,(L) Fy(L)

or
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ln[p(Sl,Sz,...,SN)] =
-{N&n(c?L) + &n F (L) + &n F,(L) +...+ n F (L)

S S S
- CHRN N S —

o’L [F, (L) F,(L) F(L)

(3.22)

Equation (3.22) is to be maximized with respect to o and L.
However, from the functional form of the right-hand side

of Eq. (3.22) we see that it is more convenient to treat the
right-hand side of Eq. (3.22) as a function of the two para-
meters (o2L) and L instead of o and L. For a given observa-
tion (i.e., sample) of our periodogram (S;,S2,...,Sy), the
values of (02?L) and L that maximize the right-hand side of
Eg. (3.22) also are the values of o and L that maximize it —
see, for example, p. 257 of Freeman [43]. Let us therefore
differentiate Eq. (3.22) with respect to (o%L) and L and

set the resulting expressions equal to zero:

azn[p(sl,sz,...,sN; o2L,L)]
3 (o?1)
S S S
S g — e 4 e O
0%L (o%L)? F (L) F, (L) FN(L)

N S
- N 1 J
- (02L)2 [OZL N '21 F.(L) ]

1 N Sj ) )
= ?;;572 jzl [FTTET - o?L| , (3.23)

and
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92nlp(8,,8,,...,8y; o2L,L)]

3L
dr. (L) dr, (L) dr,, (L)
- L : + —2 2 I S— N
F, (L) 4L F,(L) 4L Fy(L) 4L
1 S, dF,(L) . S, 4rF,(L) . Sy  AFy (L)
o?L [ F3(L) 4L F2(L) dL FR(L) dL
N dF, (L N S. ar. (L
. 1 J( ) N 3 J( )
j=1 Fj(L) dL j=1 o?L FE(L) dL

S en F, (L) _E%’T' 21, o)
021, jzl ac "y FoAL) - ° ’ (3

where parametric dependence of p(S,,3,,...,S;) on ¢®’L and L
has been indicated in the arguments in the left-hand sides
of Egs. (3.23) and (3.24) for clarity. Setting Eq. (3.23)
equal to zero yields our likelihood equation for o¢2L:

S,
—d ) (3.25)

1 Fj(L)

o?L =

==
e~z

J

Setting Eqg. (3.24) equal to zero yields our likelihood equa-
tion for L after substitution of Eg. (3.25):

N g4 S, ., N s,
) [af gn F (L)} | —4— - £ ] =0 . (3.26)
j=1 J F (L) 1=1 F, (L)
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Equations (3.25) and (3.26) are a pair of likelihood
equations for L and o0%L that involve the periodogram values
Sj, g =1,2,...,N as parameters. Equation (3.26) involves
only omne unknown, L, and therefore may be solved first.

Once L i1s obtained from Eq. (3.26), Eq. (3.25) may be solved
for o?. If we consider our turbulence sample w(t) to be a
function of time of duration T, themn the values of S; are
those obtained from Eq. (3.6) at values of fj = g/T.

9
e,

I
B3l

T/2 , . 2
} J w(t) e LeTIL/T 44 , (3.27)
Zr/2

and the values of Fj(L) are, in the cases of the von Karman
transverse and longitudinal spectra, the values given by
Eqs. (8.20) and (8.21) after substitution of

kj = J/7 . (3.28)
In interpreting the resulting values of L as integral scales,
care must be taken to properly account for the speed of the
aireraft. A method for solution of Eq. (3.2€6) i1s described
in Appendix F.

Discussion. We can galn some insight into the general
likelihood equations (3.25) and (3.26) by examining condi-
tions that their solutions must satisfy. If we divide Eq.
(3.25) by o2?L and substitute Eq. (3.17) into the resulting
expression, we obtain after minor rearrangement:

S,

ET?%T -1 =0 . (3.29)

L
N oL ;

Il ~12

J

Furthermore, if we divide Eq. (3.26) by No?L and combine
the resulting expression with Eq. (3.25) and define

A d
Gj(L) = o7 in Fj(L) , (3.30)

we obtain
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N S,

J=1 J

Equations (3.29) and (3.31) both are of the same general
form — i.e., solutions L and o%L to the likelihood equations
(3.25) and (3 26) set weighted averages of [Sj /E{S 1] -1
equal to zero. Since the standard deviation of the exponen-
tial probability density of Eg. (3.10) is equal to its mean
value E{Sj} = 1/1j, we see that the standard deviation of
each quan%lty [35 /E{Sj}] in Egs. (3.29) and (3.31) is equal
to the same value of unity.

Finally, we note that Egs. (3.25) and (3.26) can be
written in integral form

k

20 1 2 S(k)

oL = e | Sy @ (3.32)
k:l

k, [ 4 S(x) 1 K2 s(x :
J lﬁ Ln F(k;L)] [WK;L) - kz"kl J W_—) dk dk = 0 ,
k k

! ' (3.33)

where continuous wavenumber k has taken the place of the
discrete index j, and where S(k) = Sj and F(k;L) = FJ(L).

Likelihood Equations for von Karman Transverse
and Longitudinal Spectra

To specialize Egs. (3.25) and (3.26) to the von Karman
transverse and longitudinal spectral forms, we require the
functions Fj(L) defined by Eg. (3.17) and the derivatives
of their logarithms with respect to L, Eg. (3.30):

von Karman transverse
1+188.75 L%k?
7 _J

F(k,;L) = 2 (3.34)
J [1+70.78L2k5 117

FJ(L)
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117.97L2k§ (1—188.75L2k§)

_d 1
G.(L) = = &n F(k.;L) = =
J arL J L (1+70.78L2k%) (1+188.75L2k2)
(3.35)

von Karman longitudinal

F (L) = F(k,;L) = 2 (3.36)

J J [1+70.78L2k51%/¢

3 1 117.97 L2k§
Gj(L) = g7 4n F(kj;L) = -7 (3.37)

1+70.78 L2k§

The spectra, Eg. (3.17), associated with the Fj(L) above are
two~-sided spectra satisfying

o? =

where k is wavenumber
integral scale of the
the integral scale of
425 of Houbolt [16].

(3.34) to (3.37)

2
] = 70.78

Egs.

25ﬂ[

200
T

r(4/3)
r(11/6)

e o]
J o2L F(k;L) dk ,

—_00

[ r(u/3)]

3

1251T

_r(11/6)_

r(4/3)

3

— see p.
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r(11/6)

2

2

83 of Ref.

(3.38)

in cycles/unit distance, and L is the
longitudinal spectrum which is twice
the transverse spectrum — e.g., DpP.

The exact values of the constants in

188.75

117.97

are the left-hand sides of

(3.39)

(3.40)

(3.41)



Discussion. The von Karman transverse and longitudinal
functions F(k;L) of Egs. (3.34) and (3.36) are shown in Figs.
18 and 19, and the welghting functions G; (L) (multiplied
by L) of Egs. (3.35) and (3.37) are shown in Pigs. 20 and 21.
We note first from Figs. 18 and 19 that the functions
F(k ;L) = F: (L) appearing in Eg. (3.26) are independent of
L 1n the neighborhood near k = 0. Hence, spectrum samples
Sj near k = 0 contain no useful 1nformation for obtaining L
from the likelihood equation (3.26) — this fact 1s reflected
in the weight function G3; (L) in that Gy (L) is zero near
k = 0. We further see that

ar, (L)
G (L) = & an F (L) = — J (3.42)
J J Fs(L) 4L
1
changes sign at kL = (188.75)7° for the transverse case shown

in Fig. 20. However, from Eg. (3.42), we see that G; (L) is
zero at values of L where dF;/dL is zero; that is, % points
where F: (L) is independent of L. Here again, we see that
(L) provides zero welighting to the values of k in Egq.
(% 26) where Fj(L) is independent of L. Finally, we note
from Figs. 20 and 21 that for large values of k, values of
(L) approach a constant value. Correspondingly, in Figs.
1% and 19, we see for these same large values of k that
variations in log F3j(L) with L are independent of k.
Finally, there is nothlng in the behavior of the likelihood
equations or the functions shown in Figs. 18 to 21 to
indicate that solutions obtained for L and ¢2?L should be
particularly sensitive to the hypothesis that values of Sj
are mutually independent; hence, we would expect the
likelihood equations (3.25) and (3.26) to also yield good
results for nonstationary records with slowly varying non-
stationary behavior [18].

The statistical confidence of estimates of L and o?L
will be discussed in a later section of this report.
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CONSTRAINED LEAST-SQUARES ESTIMATION OF TURBULENCE
AUTOCORRELATION FUNCTION PARAMETERS

General Approach

In the method for estimation of the integral scale and
intensity described in Sec. 3.4, it is assumed that the tur-
bulence time histories are drawn from a stationary, Gaussian
random process possessing either the von Karman transverse
or longltudinal power spectral forms. As we have discussed
in Sec. 1 of this report, many fturbulence histories recorded
in practice have an additive low frequency (long wavenumber)
component superimposed on what may be described as ordinary
von Karman turbulence — e.g., see Figs. U4 through 6. Con-
sequently, the likelihood equations derived in Sec. 3 should
not be used with such records.

When a nonnegllgible fraction of the mean-square velo-
city of a record is contained in the low freguency component
wg(t), we have decided to use, jointly, the autocorrelation
function and the power spectral density of the record to
estimate the integral scale and intensity of the von Karman
component. After examination of the autocorrelation func-
tions computed from a number of velocity histories recorded
in the MAT Project [30], it became evident that over the
range of the delay variable &, say 0<&<&y, where the auto-
correlation function of the von Karman component we(t) 1s
nonnegligible, the autocorrelation function of the low
frequency component wg(t) could almost always be represented
with reasonable accuracy by a low-order polynomial — e.g.,
see Fig. 5 of Ref. 19. A rellable model of the power
spectral density of the low frequency component wg(t) of
comparable generality and simplicity is not immediately

evident. Therefore, let us express our autocorrelation
model as
A 7 ¢ 1
9(8) = of oy (&5L) + ] a,&” ,  02E<g, (4.1)
h i=0
where o% = E{O%} is the mean-square value of the von Karman

"fast" component wp(t), ¢y (£;L) is the appropriate (trans-
verse or longitudinal) von Karman autocorrelation function
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normalized so that ¢x(0;L) = 1, L is the integral scale of
the von Karman component, and

(g) =

S i

¢

1 : o
Sw aze 0<E<&y (4.2)

1

~8

0

is the polynomial approximation to the autocorrelation func-
tion of the slow component wg(t) which is valid over 0<&<g&y,
and which can contain odd as well as even powers of E&.
Equations (4.1) and (4.2) are consistent with Egs. (1.18)

Wa v Ll =2 v VL e LW

(l 29) discussed earller

We shall evaluate g% and L by minimizing the integral
squared-difference E between the autocorrelation function
model, Eq. (4.1), and the empirically obtained autocorrelation
function R(&) that Egq. (4.1) represents:

g _— m . ) 2
p & [MMRee) - 0F ogtesn) - 1 oagetlae @l
1i=0

0

where the minimization procedure will be constrained as
follows. By definition, the "slow" turbulence component

wg(t) contains predominantly low frequencies in comparison
with the von Karman "fast" component we(t). This comment
suggests that there usually will exist a wavenumber kg such
that for values of k>kyg, the wavenumber spectrum of a tur-
bulence record w(t) will be, for practical purposes, dominated
by contributions from the von Karman component we(t) only.

In this wavenumber region, we therefore may use the likeli-
hood equation (3.25) which we now write as

-— 1 N S,
O'%L-—N Z 4L=O (Ll.]-l)
Jj=1 F (L)
to constrain the minimization of E. In using this constraint,

we shall consider Eq. (4.4) to determine L as a function of
0%. Furthermore, only the spectrum values Sj for which

ks >kg will be used in Eq.(4.4); that is, the summation over
J 1n Eq. (4.4) will include onZy the wavenumbers k. >k2
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We may explicitly include the constraint, Eq. (4.4), in
our formulation by rewriting Eq. (4.3) as

. aigi§2 ac (4.5)

where, for simplicity, we have used the abbreviated notation

Il e~18

g
5= [ IR(E) - o7 6ylE50(07)] -

0 1

c? = g? R (4.6)

and where, now, L is considered as the function of o? deter-
mined by Eq. (4.4) from wavenumber spectrum values S: for

kj>kyg. Trade-offs between choices of &y and m are discussed
in Appendix G. A method that extends the model of Eq. (4.1)

to the entire interval 0<&<x, fthereby permitting computa-

tion of the integral scale and power spectrum of the slow
component wg(t), is discussed in Appendix H.

Discussion. By this juncture, the reader has undoubtedly
asked why the second likelihood equation (3.26) 1s not being
used for the range of values kj>ky to determine L. Equa-
tions (3.25) and (3.26) both aSsume that the spectrum values
Sj are obtained from turbulence sample functions possessing
von Karman spectra. Thus, in choosing kg, we must be
reasonably sure that for all kj>k,, the contribution from
ws(t) to this portion of the spectrum is negligible. By
careful examination of spectra measured in the MAT Project
[23], we have concluded that for a large fraction of atmo-
spheric turbulence records, such values of kg fall at the
approximate location of the knee of the von Karman portion
of the spectrum. Let us examine the behavior of the likeli-
hood equation (3.26) for cases where the smallest value of
J in the summation occurs slightly above this value at a
wavenumber ki =~ 1/L. Examination of Figs. 20 and 21 shows
that for values of k>1/L, Gj(L) 1s approximately equal to
the constant value

ii -1
Gj(L) - - 35 > ky2b , (4.7)

where the value of -5/(3L) can be verified for both the
von Karman transverse and longitudinal spectra from Egs.
(3.35) and (3.37). If we divide Eg. (3.26) by N and sub-
stitute the above asymptotic value of Gj(L) into the re-
sulting expression, we obtain
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_i;ff[jl__;l§ Sl]=o
LN 424 P, (L) N if1 R (L)
or
N s N N S
2)|1 B 1 1 i _
~ 3L [N L TN .Z [N .Z =0 (4.8)
j=1 Fj(L) j=1 i=1 Fi(L)

which is salisfied identically for any value of L. Hence,
when the smallest usable value kg of kj 1is L™ ' or larger,
the likelihood equation (3.26) is satisfied identically for
all values of L and therefore is useless. For somewhat
smaller values of kg, Eq. (3.26) will still yield unreliable
results. Hence, in essence, we have replaced Eq. (3.26) by
minimization of the parameter E described by Eg. (4.5).

On the other hand, the first likelihood equation (3.25)
is perfectly well behaved when the only usable values of kj
are the values kj>L . In fact, for the records that we
shall discuss in the applications portion of this work, the
l1ikelihood equation (3.25) yields results with excellent
statistical reliability. It therefore has been retained as
the constraint L = L(o?) in the minimization of Eq. (4.5).

There exist two additional reasons for using Eqg. (4.14)
as a constraint in minimization of the integral squared-
difference E given by Eq. (4.5). First, we note that when
the degree m of the polynomial of Eq. (4.2) is taken too

large, the von Karman autocorrelation function U; dg(E;L)
can be represented quite well by the polynomial of Egq. (4.2).
When this is the case, minimization of E — given by Eq.

(4.3) — leads to set of ill-conditioned equations for L,
c%, and ag,a1,...,ay,. On the other hand, when Eg. (4.4) is
included as a constraint in the minimization of EF — as
indicated by Egq. (4.5) — the von Karman component

0% ¢gl[&;L(0?)] remains dependent on only one parameter o?

in the minimization; consequently, the range of shapes that
0% ¢gl[E;L(0?)] can take on in the minimization is greatly
reduced, and for a given value of m, the minimization be-
comes much better conditioned. This is a very important
consideration when working with empirical data such as the
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empirical autocorrelation function R(E) in Eq. (4.5). We
shall see in the applications portion of this work how this
improvement in conditioning yields improved results in
certain specific cases.

The second reason for using the constraint L = L(cg?)
of Egq. (4.4) is that we shall want to estimate the wavenumber
spectrum of the "slow" component wg(t) by subtracting our
best estimate of the spectrum of the von Karman component
from the overall spectrum of w(t). Since the equation of
constraint (4.4) was obtained directly from the wavenumber
(or frequency) domain and represents an optimum estimate
obtained from the von Karman portion of the spectrum, we
would expect to obtain better results for the spectrum of
wsg(t) when Eq. (4.4) is included as a constraint in the
minimization of E.

Finally, we should comment on why it is possible for
the minimization of E — as described by Eg. (4.5) and the
constraint equation (L4.4) — to yield potentially better
estimates of o2 and L than use of the pair of likelilhood
equations (3.25) and (3.26) over the range of values of
kj>ky where the wavenumber spectrum i1s dominated by the
spectrum of the von Karman component wr(t). In setting up
the quantity E represented by Eg. (4.5) to be minimized,
we have included the representation, Egq. (4.2), of the auto-
correlation function of the low-frequency turbulence com-
ponent, wg(t). Equivalently, we have included a representa-
tion of some of the information about the "slow" turbulence
component wg(t) that would be found in the wavenumber
domain in the region k<kyg. We also have included information
about the von Karman component that would be found in the
same low-wavenumber region k<ky. The reason we have chosen
to work with the autocorrelation function representation
of Eq. (4.1) rather than with a comparable representation
of the spectrum of w(t) = wg(t) + we(t) is that it is a
simple matter to make intelligent a priori choices of &g
and m for our representation of ¢WS(£) given by Eq. (4.2)

which should lead to good results when the integral squared-

difference given by Eq. (4.5) is minimized. A representation
of the wavenumber spectrum of wg(t) of comparable generality,
simplicity and amenableness to analysis 1s not obvious.
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Derivation of Algebraic Equations for
Autocorrelation Function Parameters
Let us now derive the equations whose solution yields
a minimum value of E. That is, from Eg. (4.5), we wish

to derive a set of algebraic equations whose solution for o?
and a9,a1,...,a, minimizes the value of E given by Eq. (4.5),

where Eq. (4.4) with 37 = 02 serves to define L as a function

of o? for use in the résulting set of equations. These
equations are obtained by setting the derivative of Eq. (4.5)
with respect to ajp,a:1,...,ay and 0? equal to zero, where L

is considered as a function of o2:

BB?E =0, j=0,1,...,m =0 . (4.9a,b)
3 302

Differentiating Eq. (4.5) with respect to aj, we obtain

€ m .
3a. = -2 J 8 {R(g) - 0% ¢ylesLo®)] - ] a, et bed ag

<
o

j=0,1,...,m . (4.10)

Furthermore, differentiating Eq. (4.5) with respect to o2
while treating L as a function of o?, we obtain

£ m .
oF - o J i {R(E) - o? ¢K[€;L(02)] - aial}
do? i=0
g2 2% an 0. [E;L(c2)]1 Y ag (4.11)
3L o2 gKL&3 . .

Setting Egs. (4.10) and (4.11) equal to zero yields the set
of m + 2 nonlinear algebraic equations for ag,ai1,...,an
and ¢? which can be written as
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2 : m € s £ .
ot [ edoglesnen1 ar + 1 oay [T et ae - [ ednee) a,

0 0 0

J=0,1,...,m (4.12)

and

g 90, [E3L(c?)]
ot [ ior K Ly 4, [£50L(02)]

2
5 oL do

x ¢ LE5L(0?)] dE

m -
+ ] ay o + oplE;L(o?) (e ak
i=0 2

JEH L 00lE5L(0®)] 4p
5 oL do

£ ¢ LE3L(c®)]
- J . {02 £ I 4 gL [E5L(02) T} R(E) AE , (4.13)
0

oL do?

where, from Egs. (4.4) and (4.6), L(c?) is defined by the
eguation

N S.
— (4.14)

3
J=1 LF, (L)

2|

where, as indicated earlier, only values of S: dominated by
the von Karman component are included within the summation
in Eq. (4.14).

For the von Karman transverse and longitudinal spectra
of Egs. (3.18) and (3.19), let us define the normalized

spectrum ®(k), where

E8 Lk |, (4.15)
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by
¢K(k) = g2L 5K(Lk) ; (u.16)

where the overbars denote normalized spectra and normalized
wavenumber. Then, for eilther transverse or longitudinal
spectra, the corresponding transverse or longitudinal auto-
correlation function is

J @, (k) e12TKE 41

- OO

0? ¢, ()

ei2ﬂLk£/L

o%L j EK(Lk) dk

-0

= o2 J 2, (K) c12mKE/L 4 (4.17)

- 00

If we define a normalized length measure by

Th e/ (4.18)

and a normalized autocorrelation function by

F® & [ 3 12 (4.19)

= 0O

then, according to Eqs. (4.17) to (4.19), we may express
g (&) as

o (8) = dp(E/L) = ¢p(E) . (4.20)

o LE3T(02)]
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Consider, now, the derivatives of ¢g with respect to

L which appear in Eq. (4.13). According to Eg. (4.18), we
have
98 _ £ ; (L4,21)
oL L2
hence, from Eq. (4.21), it follows that
80, [£5L(02)]  dg(E) 9F
oL dZ 3L
d¢ (%)
- - & - Shas (4.22)
L2 d&

Turning to
define

I, (L)

where Egs.
the second

b (B)

The second

100

the integrals that appear in Eqg. (4.13), let us

£y d9xlE5L(0?)]
b [ dxlEsL(0%)] at
5 oL
E/L
- j 9D 5,00 aF (4.23)

0

(4.18), (4.20), and (4.22) were used in going to
line, and where

dgy (E)
ag

(4.24)

integral that we require is



lic>
i

3% 20z, 2
1, & [ ozresncon)] as

o

o5 (E) ag (4.25)

where Egs. (4.18) and (4.20) have been used in going to the
second line. Next, we require

By 5 904LE5L(0%)]
15,0 & - L [T K a
LY J oL
e/l .
= f TP 5@ af L, §=0,1,...,m (4.26)

0

where Egs. (4.18) and (4.22) have been used. From Eq. (4.13),
we also require

& R
7, (3,1 4 Lfij J Ted g lei007)] ac
0
) J EY $x(€8) dT , J=0,1,...,m ,  (4,27)

0

where Egs. (4.18) and (4.20) have been used. We next
require
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£ 00, [E3L(0?)]
R R(E) ag
R(0) 4 3L
1 gH -1
= £ ¢x(E/L) R(E) dg (4.28a)

R(0)L* o

I AN N
R(0)

0

where Egs. (4.18) and (4.22) have been used. We further
require

:
10y & L [T g resn(o%)] R(2) a
R(O)L 4
gH
= —1 J b (/L) R(E) d& (4.29a)
R(O)L o
e/l
- — f () RLD) af (4.29b)
R(0)

0

where Egs. (4.18) and (4.20) have been used. Two additional
integrals are required for use in Eq. (4.12):

£ .
1 H .J
1+ J &7 as

0

>

I,(j,L)
L

(gH/L)l+j
= — J=0,1,...,2m (4.30)
+J
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and

¢
. A 1 H ,J
1,(,0) A —-——j ¢J R(g) az (4.31a)
s r(0)Lt*d
£./L .
= L J i T R(LE) 4T , j=0,1,...,m (4.31b)
R(0)

0

where Eq. (4.18) has been used. The above quantities T,
through I, are dimensionless.

Using the definitions of Egs. (4.23) to (4.31), we can
rewrite Egs. (4.13) and (4.12) as

02[—02 Ak r (L) + L IZ(L)]
do?

m . .
+ 7 a, |-02 &t 71,1y + s (i,L)l
=0 - do? : . :

= -R(0) o2 & 1 (1) + R(O)L T (L) (4.32)

do

and

a, L' 1 (i+5,1) = R(O)L I,(3,L)

2
c°L Iu(j,L) + 1

[ e ]

i=0

Jg=0,1,...,m . (4.33)

Equations (4.32) and (4.33) for j=0,1,...,m constitute a
set of m + 2 nonlinear simultaneous algebraic equations for
0? and ag,a1,...,8y. For a given value of o2, Eq. (4.14)
(inverted) determines the quantity L(o?). Equation (4.14)
also determines dL/do?:
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_ ' -
L _ (égf)_l ) j [Fj(L)+L FJ.(L)]Sj ’ (. 31)
do? dL j=1 LZFE(L)

which yields dL/dc? for a given value of L(oc?).

2=

Matrix Form of Algebraic Equations for
Autocorrelation Function Parameters

For numerical solution, the set of m + 2 equations
(4.32) and (4.33) can be written in the matrix form

2 2 2 2
A, (0%)y + Ay 5(0%)y, +on ot Al’m+2(o Vo = %x,(0%)
2 2 2 — 2
A2l(o )yl + A22(c )y2 +...+ A2,m+2(0 )ym+2 = x2(0 )

2 2 2 — 2
Argo, 10050y + Ao 5(00)y, et A s (08 = X0 (07)
(4.35a)

or, more concisely, as
m+2

) Akz(oz)yz = xk(cz) , k=1,2,...,m+2 (4.35b)
=1
where
yq = o2, Vo £ 25 5 for 2=2,3,...,m+2 (4.36)
x, = R(0) | —02 9 7 (1) + L I (L)

l 2 5 6

do

X, = R(0O)L I, (k-2,L) for k=2,3,...,m+2 (4.37)
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» dL
do?

N I,(L) + L I,(L)

A, = -2 S 122 1 (g o 1) + 21 1 (e-2,1)
12 2 3 N
do
2=2,3,...,m¥F2
Ay 5 LI, (k-2,1) , k=2,3,...,m+2
! ol _ el
A, = I (k+8-4,L) , k=2,3,...,m+2; £=2,3,...,m+2.
(4.38)
Method of Solution
Scaling of matrix equations. The m + 2 equations (4.35)

were scaled before thelr solution was obtained — using the
method suggested on pp. 118-119 of Hamming [44]. This
scaling is carried out as follows:

1. Consider a new array of '"coefficients" which is the
array As; in Eq. (4.35) with the right-hand side added as
an additilional column

Ayq Ao Ay m2 X

>

Ao1 Aoz B mee
Am+2,l Am+2,2 Am+2,m+2 m+2.

Meew

2. Call the above new array Aii where i ranges from

1l tom + 2 and j ranges from 1 to m 3.

1

3. Form a new array Eig from the array A where for
3

i3
every i=1,2,...,m+2 and j=1l,2,...,m+3 J
~ ri+cj+M
1 = 1
Alj 2 Aty - (4.39)
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Formulas for rj, C3s and M will be given in item 6 below.

4., Let 15925+ --5Yp+2 be the solution to a new set of
matrix equations which may be written in terms of our ori-
ginal notation as

r.+c +M
[Eri+cj+M A__]{yj} - {2 1 m+3 xi} . (L4.40)
13

5. Multiplication of every element by 2M does nothing

r.
to the solution. Multiplication of every row by 2 1 does

nothing to the solution. The effects of multiplication of

c
the right-hand side by 2 m+3 can be eliminated by dividing
Cm+3

every element by 2 Therefore, the relationship between

yj and §j is

j
5 .= y. . (4.41a)
m+3 Y J

2

In other words, for every J the solution y: of the original
equations (4.35) is obtained from the solution y; of Egs.
(4.40) by

c.-C
+3 . .
yy = 2 J m+3 §; . Jsl,2,...me2 . (4.41p)
6. To determine values for rj, cj, and M we first form
for every pair of values i,j where 1=1%2,...,m+2 and
J=1,2,...,m¥3 the guantity
log,, |4, .|
dy,; = = (L.L2)
J log102

where [Aj;| denotes the absolute value of Ajy, and where
Ai,m+3 = X, as in item 1. Values of WM, r'ss and ¢, are then

J
computed by
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-1 m+3 m+2
M = Y Y d,. (4.43)

(m+2) (m+3) j=1 i=1 J
_1 m3
ry = ey .Z (dij+M) (4.uh)
j=1
-1 m+2
R izl (dij+M) . (4.45)

Initialization of computation. Steps in preparing for
solution of the matrix equations (4.40) are:

1. Compute the unsmoothed power spectral density of the
record of interest. Call the (unsmoothed) computed spectrum
values Sj. Pick lower and upper wavenumbers kg and k;; which
define a wavenumber region ky<k<k, where we are confident
that the spectrum is dominated by the von Karman component
of the turbulence. For values of S; that fall within this
wavenumber region, determine for a set of equally spaced
values of Lj the quantity

S

2 - 2 _1
g, = O©O (L Fj-@ s (LI.M6)

3 3) =

=
M~

i=1 b

as defined by Eg. (4.14), where F{(L) is given by Eq. (3.20)
for transverse (vertical or lateral) records and by Eqg.
(3.21) for longitudinal records. When OZ(LJ) is computed
for a range of equally spaced values of L:, we have c? as a
numerical function of the integral scale i This tabula-
tion is to be considered as determining L as a function of
0?. Values of L falling between tabulated values of Lj

are obtained by interpolation.

2. Values of dL/dc? also are required as a function of

o?2. 1In our computations, we used the approximation
L - L
dL i+l j
— . , (4. 47)
do 0j+1 - ﬁj
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where the values of L and 02 in the right-hand side of Eq.
(4:47) are those computed by Eq. (4.46). A more accurate
procedure would be to compute dL/do? by Eq. (4.34) for the
same values of Lj used in Eq. (4.46).

3. From the autocorrelation function R(£) of the
record under consideration, and for the same values of L
used in Egs. (4.46) and (4.47), the integrals of I, through
I, given by Egs. (4.23) through (4.31) are computed numer-
ically. Each of these integrals is a functlon of the
integral scale L. Thus, I, through Is is to be computed for
each of the above mentioned equi-spaced value of Ls. The
values of the integrals are then tabulated. Compu%ation of

these integrals requires the functions ¢x(%) and 5&(5) which,
for von Karman transverse and longitudinal spectra, are:

for von Karman transverse spectra (vertical and lateral
components):

5.8 = =2 (emyvs |k (6F) - BTk, (8D (4.48)
¢ (E) = ;?I;E; (BE s (BE) - 5 & K_ 0 (BE .
—='Ey B T u/3 = _ 8 = 1/3 -

@ = [(sg)“ Ky, (85) - £ (8E) K_Zh(BE)](M-“9)

for von Karman longitudinal spectra:

55 = —22 (eE) k. (F) (h.50)
K r(1/3) 2

N 2f3
T = -27°8 =\ 1/3 =

¢, () = ——— (BE) K (Bg) , (h.51)
K r(1/3) -2/

where

g & 2/m I(11/6) , (4.52)
5 T(4/3)
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th and K_zh are modified Bessel functions of the second kind

of order 1/3 and -2/3, and TI'(+) is the gamma function.
Values of the Bessel functions were read off of the tabula-
tion on p. 228 of Ref. 45, where we note that K_ (x) =

K, (x). Values of E ¢K(£) were tabulated rather than values
of ¢K(£) because ¢K(£) has a singularity at & = 0 whereas
£ ¢K(E) tends to zero as £ - 0. Values of I, through Ig

required for L # L; were obtalned by interpolation between
the tabluated values of the I's

Solution for o? and ag,ar,...,ay. Once L(cg?), dL/do?
and I; through Is are tabulated for a predetermined set of
equi-spaced values of L = Lj, the solution to the set of
equations (4.40) can be obtained. This solution yields the
solution to the set (4.35) by Eq. (4.41b). Although the
scaled equations (4.40) were actually the set solved, we
shall describe the solution procedure in terms of Egs. (4.35).

The coefficients Ay and the right-hand sides Xk of
Egs. (4.35) are functlons of the unknown variance ¢? = y;
of the von Karman component. Thus, Egs. (4.35) were solved
by trial and error. From a plot of the autocorrelation
function of the record R(£), a rough estimate of o2 = 0%
is easily obtained. This value of o? determines L = L(o?)
and dL/doc? which are obtained by interpolation from pre-
determined tabulated values of these quantities. I: through
Ig also are determined by interpolation from predetermined
values tabulated as functions of L = Lj. Consequently,
once the initial value of o? has been chosen, the coef-
ficients Aij,i,j=l,2, ,m+2 and right-hand side x4,
i=1,2,...,m+2 in Egs. (4 35) are determined. Eqguations
(L.35) are then solved, the solution being a new value of o¢?
and ag,a1,...,ay [see Eq. (4.36)]. Using the new value of
o?, the coefficients Ajj, 1,j=1,2,...,m+2 and right-hand
side xi, i=1,2,...,m+2 are again evaluated, and the set of
Egs. (4.35) is solved again. The new solution yilelds a
new value of o? and Values of ag,a15...5am. By comparing
the solution values of o? with the Znput values of ¢? for
these two solutions, a new trial value of ¢? is chosen and
the set of Egs. (4.35) is solved again after evaluation of
the coefficients and the right-hand side using the new
trial value of c2. In carrying out this procedure, we
terminated the process when the input and solution values of
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2

0° were in agreement to three significant figures. The final

values of o2 = E? and L(o?) determine the spectrum of the

von Karman component of the turbulence.
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VARIANCE OF MAXIMUM LIKELIHOOD ESTIMATES OF von KARMAN
TURBULENCE PARAMETERS

In Sec. 3, a pair of equations (3.25) and (3.26) was derived
whose solution yields maximum likelihood estimates of o?L and L
from spectrum samples S;, j = 1,2,***,N. These spectrum samples
are to be computed from turbulence velocity records whose
(expected) power spectral densities are assumed to be of the
von Karman transverse or longitudinal forms. Since individual
turbulence records are stochastic functions of time, estimates
of 02L and L computed from such records also are stochastic.
Thus, in any particular application the solution 02L, L to the
palr of equations (3.25) and (3.26) is a two-dimensional random
variable whose jolnt probability density function depends on the
duration of the turbulence sample function from which the estimate
of ¢%L and L is obtained. 1In this section, the probability
density functions of maximum likelihood estlmates of ¢%L and L

are discussed. In addiltion, explicit formulas are given for the
squares of the coefficients of variation — i.e., relative vari-
ances — of ¢?L, L, and o?

Asymptotic Forms of Probability Density Functions
of Turbulence Parameter Estimates

In the "standard" class of problems that employs maximum
likelihocod estimation; each of the individual probability density

functions Asie AJSJ, g =1,2,*++,N in Egq. (3.11) is identical.
However, this is not true in the present application because the
values of the parameters X; depend on j — as may be seen from
Egs. (3.12), (3.17), (3. 20% and (3.21). Hence, care must be

exercised in applying the “standard" results to the present
problem.

The "standard" result that is our main interest is the
asymptotic (large sample) form of the joint probability density
function of our estimates of ¢?L and L obtained by solving Egs.
(3.25) and (3.26). In the standard class of problems mentioned
above, such maximum likelihood estimates are jointly normally
distributed in the large sample 1limit — see, e.g., p. 55 of
of Ref. 38 or p. 155 of Ref. 46. 1In the present case, we shall
appeal to the form of the multidimensional large sample result
cited on p. 155 of Ref. 46, which avoids the troublesome problem
of bilas, and which is the multidimensional extension of the
approach used by Cramer on pp. 550 to 504 of Ref. 8.

111



To justify use of the large sample asymptotic normal - form
in the present "nonstandard" application, we must show as the
total duration T of our turbulence sample function approaches
infinity that (1) 94np/d3(c?L) and d88np/dL are asymptotically
Jointly normally distributed with zero expected values at the
true values of o2L and L and (2) sample values of 3%&np/d2(c3L),
522np/5(c?L)sL, and 82&np/sL? converge to their respective
expected values in the sense that fractional deviations from
their expected values vanish with probability one as T > « — see
pp. 154 and 155 of Ref. 46 and pp. 43 and 55 of Ref. 38.

Consider requirement (1) first. According to Egs. (3.23)
and (3.24), 8np/9(c2L) and 94np/d3L both are linear combinations
of the independent random variables (S /F:), j = 1,2,*++,N. From
Egs. (3.10), (3.12), and (3.17), it follows that each random
variable (SJ/FJ) i1s governed by an exponential probability
density function with the same (unknown) expected value of o2L.
From this fact, it follows that at the true values of o?L and L
we have E{aﬂnp/a(ch)} = 0 and E{3&%np/3L} = 0. To show that the
two-dimensional random variable {d8&np/d(c?L), 8%np/3L} is
asymptotically normally distributed as T »> «, we employ the two-
dimensional central limit theorem — e.g., pp. 285-287 of Ref. 8.
Since, in the case of Eq. (3.24), we are dealing with a weighted
sum of Independent random variables, where the weighting function
is é%-lnFj(L), we first consider the behavior of the sums in
Egs. (3.23) and (3.24) over a typical limited fixed frequency
range, say Af, as T » «. According to Eq. (3.13), if the fre-
quency range Af is fixed, as T » « the number of samples within
AT iIncreases indefinitely since the frequency difference between
adjacent samples of 1/T. This behavior is true for every fre-
quency interval Af over which the histogram S(f) — Eq. (3.6) —

is computed. Since the slope of the weight function g%-lnFj(L)
is everywhere finite — see Eg. (3.30) and Figs. 20 and 21 — we

may choose Af small enough so that ZnFj(L) is essentially

da
dL
constant within Af. We may now apply the central limit theorem
to the contributions of the sums in Egs. (3.23) and (3.24) within
each such frequency interval Af to show that the contributions
from each such Af are asymptotically jointly normally distributed
as T » o, The sums in Egs. (3.23) and (3.24) over all such dis-
Joint intervals then represent the sums of (nonidentically
distributed) independent two-dimensional normal variables which
are known to be normally distributed — e.g., pp. 212 and 316 of
Ref. 8. Hence, as T » «, the two-dimensional random variable
{9enp/3(0?L), 3tnp/3L} is asymptotically normally distributed
with zero mean value at the true values of o2L and L.
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Let us now consider requirement (2) above. Forming the
partial derivative of Egq. (3.23) with respect to 2L gives

324n[p(S,,8,,***,Sy30°L,L)]

9(o?L)?

- N - 2 ? [ Sj - o2L ] : (5.1)
(02L)2  (o2L)® j=1[F3(F) ’

forming the partial derivative of Eq. (3.23) with respect to L
gives

azln[p(sl,sz,---,SN;02L,L)]

9(oc?L) 3L

1 N _, dF. (L
- (52L)2 jzl [FJ(L)] S

S,

I § [fL-QnF (L)} ; (5.2)
(o21)2 g=1 L 7 Ryt

and forming the partial derivative of Eq. (3.24) with respect to
L gives

3%enlp(s ,s ---,SN;GZL,L)]

2?2 -
3L2
N S. 4r.(L)
L ) é%—an.(L) [ - S —J ]
o?L j=1 J FE(L) dL
2 S.
+-[ d an.(L)][ = JL) - o2L ]
dLZ J J‘
or,
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len[p(Sl,Sz,"°,S ;02%L,L)

N°? -
oL?2
N 2 S,
" ) [d nF (L)} ——%~y
021, |j=1 aL J Fj L

N 42 S5 2
- Z [—-— ,QHFJ(L)J [F(Jﬁ)f-y - O LJ . (5.3)

j=1 laLr?

Taking the expected values of each of the above three equations,
using

E -—E' ) = ¢2L (5.4)
Fjngj ’

and introducing an obvious shorthand notation for the left-hand
sides gives

2

gl %p {_ _ _ N (5.5)
3(o?L)? (o?L)?
324n 1 N d

E {2 HP %= _ I 3 nF (L), (5.6)
3 (0 2L) 3L 021 j=1 J

and
N 2

32 9np [d ]

E {22280 = o ) |25 anF, (L) . (5.7)
dL? SES ol

Let us define the fractional deviation of 328np/3(c?L)? [given by
Eg. (5.1)] from its expected value [given by Egq. (5.5)] by €, —
i.e.,
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A [324np/3(c?L)2]-E{3%8np/3(c?L)?}
E{3%2np/3(c?L)?}

1

([azznp/a(GZL)ZJ-E{azznp/a(ozL)z})

= B{222np/3(0%L) %} : (5.8)

2|

and denote analogous definitions of the fractional deviations of
32enp/3(c?L) 3L and 32np/dL? by e, and e, respectively. From

Egs. (5.1) to (5.3) and (5.4) to %5.6), it follows directly from
the expression for e; given by Eq. (5.8) and the corresponding two
expressions for €, and €, that

2 1 N S, )
ST L | FEy - ot (5-9)

L § 4 onF, (L) > 21,
N E it F(L) ¢
8 =
2 1 N og
o2L 5 ) T anj(L) (5.10)
j=1
and
N 2 2 S,
1 a e 2
N jzl [dL RnFj(L)] [dLZ anj(L)] [FE%ET o L]
€43 % 1 N 3 2 )
g2L 5 jgl [EE ZnFj(L)] (5.11)

We must show that €15 €, and €, all approach zero with prob-
ability one as our turbulence sample duration T - «, Since the
random variables Sj/Fj(L) are each governed by an exponential
probability density wlth mean value o2L, it follows from the
(weak) law of large numbers — e.g., p. 228 of Ref. 47 — that

e, >0 as T » » with probability one.
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To show that €, - 0 as T » =, we note first that, in the
limit T » «, the denominator of the right-hand side of Eq. (5.10)
approaches the limiting constant value

N, AK
A 2L 2 d .
D, = (W, -, ) Bk f 35 WnF(k;L)dk . (5.12)
N, Ak

This fact becomes clear when we observe (1) that the denominator
in Eq. (5.10) is 0%L times the average value of the derivative of
QnFj(L) with respect to L, (2) that, in the large sample limit,
depéendence of F3;(L) on the discrete variable j is replaced by
dependence on t%e continuous variable k as shown in Egs. (3.34)

and (3.36), and (3) that in taking the limit T -+ « in applications,
we fix the lower and upper wavenumber limits

kl = NlAk, k2 = NZAk (5.13)

where N = N,-N, and increase indefinitely the density of sampling
points within the interval k,-k. so that the sum approaches the
definite integral in Eq. (5.12) of the continuous function

. - 4d
an(kj,L) = 3T anj(L) (5.14)

- 4
Gj(L) ~ dL
shown 1in Figs. 20 and 21 for von Karman transverse and longi-
tudinal spectra.

Consider, now, the numerator of Eg. (5.10). Here, we may
appeal directly to the form of the (weak) law of large numbers
given on p. 238 of Ref. 47, which applies to sequences of non-
identically distributed independent random variables. The
numerator in Eq. (5.10) can be expressed as

N
N, &3 I x5 (5.15)

S,
x; = [é%—anj(L)][FG%%s-- OZL] (5.16)



are the random variables of interest. Since Sj/Fj(L) is governed

by an exponential probability density with mean 02L (independent
of j), it follows that the random variable {[SJ/FJ(L)]—UZL}

has zero mean and variance (o2?L)?. Hence, the”rahdom variables
defined by Eq. (5.16) have zero mean and variances

03 = (o%L)? [g% RnFj(L)}Z- (5.17)

A sufficient condition for N, fto vanish with probability one as
T - o 1s — according to Eq. %5.6) on p. 238 of Ref. 47 — that

2
S N S
N? 21 J

N2 j=1 Y
= (_GZ_L)_i %I 4a anF. (L) 2 (5.18)
Cowz gEldb T '

vanish as T + «. However, in this 1limit Eq. (5.18) approaches

2
S 2 2 NAk 2
N, (L) 2 4a :
7 NOV,W, JB% f [dL QnF(k,L)] dx
N, Ak
BN CL DLINN Y - ISR LI (5.19)
T N(k,-k,) an o 5 > 5.19
k

1

where we have substituted N = NZ—N1 and have written the l1imiting

form of the sum on the continuous function ILnF(kJ.,L)J2 as

4a
dL
an integral as before. The right-hand side cof Egq. (5.19) is pro-
portional to 1/N; hence, (sy/N) is proportional in the limit to

1/vN and therefore to 1/vT. e, therefore approaches zero with
probability one as T »+ «. The argument that e_, must approach
zero with probability one as T » « 1s carried out in exactly the
same way as that for ¢,.
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The maximum likelihood estimates of o?L and L therefore are
asymptotically jointly normally distributed with mean values equal
to the true parameter values (denoting estimates of o¢2L and L
subscripts 1 and 2 respectively)

m, = o2L, m, =L, (5.20 a,b)

All A12
AT =
Ayy LYY B (5.21)
where
2 2
A, = -p {200 a,, = -g {2l
3 (o?L)? 3L2
and
finp |
Ay, = A, =-g) 20D (5.22 a,b,c)
B(GZL)8L$

(p. 55 of Ref. 38 and p. 155 of Ref. U46). Expressions for the
(negatives) of A, A, and A21 are given by Egs. (5.5) to (5.7).

It is easy to verify that the inverse of A~! is given by

_ 1
[A=1]

A
~A Ay (5.23)
where |A~!| is the determinant of A™!,

|AT'] = A A -A A (5.24)

2 127721°
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and where the form of Eq. (5.23) can be verified by multiplying
Egq. (5.21) by (5.23) and using Eq. (5.24):

0 1 . (5.25)

If we write the covariance matrix A in the conventional form —
e.g., p. 295 of Ref. 8 —

Ol pOIOZ
A =
oo, 0, 02 s (5.26)

it follows by comparison of Egs. (5.22), (5.23), (5.26), and Egs.
(5.5) through (5.7) that we have

N
_E{Ei&§2} 1 [g%-anj(L)Jz
o? = 3L - J=1 , (5.27)
A=t A=
—E{ 324np } N
o2 = 3(c?L)?) _ (o%L)? ; (5.28)
[A=1] | A=t
and
N
E{B_ZZLQL} b c;i—L wn¥ (L)
_ 3(o®L)3L) _ _ J=1 , (5.29)

OlﬁzlA—ll '// N 14
N -Zl[af QnFj(L)J
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where from Egs. (5.22), (5.24), and (5.5) through (5.7), we have

A=t = E{ 3%4np } E{Bzﬂnp} _ E{ 92anp } ’
d3(o2L)? oL ?2 3(o?%L)aL

1 N [d 2 N 4 2
z;;z;;— N jzl 3L anj(L)J - [jzl ar QnFj(L) . (5.30)

In summary, we have shown that solutions to the pair of
likelihood equations (3.25) and (3.26) provide estimates to the
true values of o?L and L that as T + « are asymptotically
governed by a joint normal probability density with mean values
equal to the true parameter values o?L and L as indicated by
Eqs. (5.20 a,b) and with covariance matrix elements given by
Eqs. (5.27) to (5.30), where o¢% and o} denote, respectively, the
variances of our estimates of o2L and L, and p denotes the
correlation coefficient of these estimates. The limiting forms
(as T » ) of o%, cﬁ, and p for the von Karman transverse and
longitudinal spectral forms will be evaluated in the next sectilon.

Expressions for Covariance Matrix Elements for
von Karman Transverse and Longitudinal Spectra

Let us turn now to evaluation of the large T limiting forms
of the sums in Egs. (5.27) to (5.30) which apply to our asymptotic
Joint normal distribution of the maximum likelihood estimates of
0?L and L. We shall continue to use the notation established
in Sec. 3 — Eq. (3.17) in particular — and at the end of this
section we shall specilalize the results to the von Karman spectral
forms of Egs. (3.20) and (3.21).

First consider the expression for p given by the right-hand
side of Eq. (5.29). If we divide both numerator and denominator
of Eq. (5.29) by N, we shall require expressions for the two
quantities

(1) 4 . S wnF (1) (5.31)

and
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N 2
(2) A 1 4a
1 =R -zl[dL anj(L)] . (5.32)

Since the right-hand sides of Egs. (5.27) to (5.30) represent the
limiting forms of the variances and correlation coefficient of
our estimates of o?L and L as T +» =, we can, without loss in
generality, consider only the limiting forms of the right-hand
sides of Egs. (5.31) and (5.32) as T » . Denote these limiting
forms by

7(1) 4 lim 1(1), £(2) 4 lim ,(2) (5.33 a,b)

T->co Moo

and consider I(l) first. Here, we shall consider the record to
be of length L where L = VT, T being the duration of the record
and V being the speed of the aircraft used in measuring the
record. Hence, our N wavenumber spectrum samples Sj discussed
in Sec. 3 are spaced at wavenumber intervals of

Ak = 1/L (5.34)

[which correspond to frequency intervals of Af = 1/T — see Eq.
(3.13)1.

Recognizing that the right-hand side of Eq. (5.31) repre-
sents an average of (d/dL)KnFj(L), and that as T and L » «, our
wavenumber spacing Ak - 0, we have for the limiting form of

I(l) given by Eq. (5.33a):

N, Ak
(1) _%E f 2 g% enF(k;L)dk, (5.35)
N, Ak
where
N =DN,~N , (5.36)

and where we have used the notation of the left~hand identities

in Egs. (3.34) and (3.36). From Egs. (3.35) and (3.37), we see
that L(d/dL)&nF(k;L) is a function of only the produet Lk; hence,
let us define
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>
[oh

H(Lk) L = anF(k;L). (5.37)

(1)

Using Eq. (5.37), I can be expressed from Eq. (5.35) as

N Ak
A i J 2 H(Lk)Ldk (5.38)
NL2 Ak ¥ bk
N LAk
= i f > H(g)de, (5.39)
NL2 Ak
N Lak
where £ = Lk. Let us define
H_ & éiﬁ H(E). (5.40)

Recognizing that we are especially interested in the case of
"large" upper limits N Ak and N LAk in Egs. (5.35) and (5.39)
respectively, let us now rewritée Eq. (5.39) as

N LAk H_(N,-N,)LAk
(1) _ i 2 [H(g)-H_JdE + -
NL28K g 1y NIZA k
. N Lak H_
- =L [ ey, dee + 2, (5.41)
NLZAK N 1Ak

where we have used Eg. (5.36).

The likelihood equations (3.25) and (3.26) apply for any
limits N; and N, in Eq. (5.41). However, generally we are
interested in a (dimensionless) low wavenumber limit of
k,L = N,LAk = 0, whereas the (dimensionless) high wavenumber
limit k,L = N,LAk is usually taken to be the largest wavenumber
for which the spectrum is still unaffected by instrumentation
errors etec. This highest wavenumber is usually of the order of
k,L ~ 10, where L is the integral scale of the turbulence. From
Egs. (3.35) and (3.37), we see that
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H(Lk) = LGJ(L) (5.42)

which is plotted in Filigs. 20 and 21 for the von Karman transverse
and longitudinal spectra respectively. We shall show later that
for both of these spectra we have

H, = - 2 = -1.666--, (5.43)

and we see from Figs. 20 and 21 that for values of kL larger than
about 3 this asymptotic value has, for practical purposes, been
reached. Thus, for cases where kl ~ 0 and k L, = N LAk > 3L, we

2 2 —
may replace Eq. (5.41) by

e H_ (1)  H_
8 I [ mnee)mdag 22 T— v 2, (5.44)
NL?Ak ¢ NL2 Ak
where
v 8 f [H(E)-H_JdE. (5.45)
0

Let us turn now to 1(2) defined by Eq. (5.32) and its large
T asymptotic form defined by Eg. (5.33b) — which is

NAk

N_Ak 2
2y o 1 J 2 [gf an(k;L)] dk (5.46)
N, Ak

where the above limiting form is arrived at by the same arguments
as were used in obtaining Eq. (5.35). Proceeding along the same

(1)

lines as 1in the case of I , we have upon introduction of the
definitions of Egs. (5.37) and (5.40),

123



N, Ak

(2) o 1 j 2 H2(Lk)Ldk
3
NL3Ak N Ak
N LAk
2
- i H? (£)dE
NL3Ak 1, LAk
N, LAk H2(N_-N_)LAk
= — T [H(g)-H2lag + ———
NL*Ak N, LAk NL*A k
1 N, LAk H2
= — f [H%(g)-HZldg + — (5.47)
NL3Ak N Lik L
where N = N,-N. was used in going to the last line. Again recog-

nizing that we are dealing in the integrand with the quantity
described by Eg. (5.42), we see from Figs. 20 and 21 that for
lower (dimensionless) wavenumber limits k,;L = N;LAk = 0 and upper
limits k L = NZLAk larger than about 3L, we may replace Eq.

(5.47) by

o H? (2)  HZ
r{2) & 1 f [H2(g)-H21dg + — = Lo v 2, (5.48)
NL 3 Ak L2 NL3Ak L?

where

(2) [H2(g)-H2TdE . (5.49)

=2

>
Q—
8
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From Egs. (5.29), (5.32), and (5.33), it follows that the
large T asymptotic form of the correlation coefficient p can be

expressed as

(1)
T
P = - —
(I(2))’2
(1)
IR
(1)
(1) Y
H, + I B * Tk, Tk T

T -~ L
2 Y ° 2 °
(Hw * NLAk) [Hw * Zkz—k15L]

where the second and third lines are valid approximations when-
ever we have for the lower wavenumber limit in our likelihood

equations (3.32) and (3.33) k, = 0, and for the upper wavenumber
limit we have k, > 3L~!. Notice from Eq. (5.50) and the fact that
H_  1s negative %hat

lim _

k2+w o= 1. (5-51)
Hence, when k, = 0 and k, -~ «, our estimates of o?L and L have a

correlation coefficient of unity. This limiting behavior may be
understood from the fact that <f L were known exactly, our esti-
mate of oL given by Egs. (3.25) or (3.32) would improve
indefinitely as k, = N,Ak increases indefinitely; hence, for
large enough k2 ail of the statlistical uncertainty in our esti-
mate of o?L is a consequence of the uncertainity in our estimate
of L — which is reflected in the fact that p + 1 as k, » =.

Let us turn now to evaluation of ]A'll given by Eqg. (5.30),
which 1is required in our expressions for o] and 0; given by
Egs. (5.27) and (5.28). From Egs. (5.30) through (5.33), we see
that the large T asymptotic form of |A~!'|/N? can be expressed as

125



—_ 2
A7} _ 1 [1<2> _ (I(lv ] . (5.52)

N2 (o?L)?2
Hence, whenever k, = 0 and k, > 3L~!, we have for practical
purposes

(At . 1 (2 _ (DY
N? (o?1)2 L7 ”
= 1 y (2 +H2-—Y(—l>+H
L2(o%L)2 ((k,~k )L (k,-k )L

(1))?
1 I%(z)_2H®Y(l) _ _jl___l_] , (5.53)
L2 (¢2L) 2NLAok (k,-k )L

where Egs. (5.44) and (5.48) and the relationship

NAk = (N,-N_)Ak = k, -k, (5.54)

have been used in going to the second and third lines in Eq.
(5.53). Let us now define

>

v 2 [race)-n,1%ae

0

f (H?(g)-2H_H(E)+HZ]dE ,
0

1l
ow—

[a® (£)-K2Jag-24, | [m(£)-8,Jag
0

= (2 oo 4D (5.55)

126



according to Egs. (5.45) and (5.49). Combining Egs. (5.53) and
(5.55) with Eq. (5.34), we find that |A™!|/N can be expressed as

- (1)) ? |
IANIJ - 1 v(3) (Y ) , (5.56)
(0?L)*L3%/L (k,~k )L

where Y(3) 1s expressed in terms of y(l) and y(z) by Eq. (5.55),
and where Eg. (5.56) is valid for practical purposes whenever

k, ~ 0 and k, > 3L7'.

If we divide the numerator and denominator of Eg. (5.27) by
N, we can express the large T asymptotic form of ci as

1(2)

0% =
[ATY] /N

1

(5.57)

where Egs. (5.32) and (5.33b) have been used. Recalling that Of
is the variance of our estimate of o?L, we can express the
relative variance of our estimate of o?L for the case where

k, ~ 0 and k, > 3L7! using Egs. (5.48), (5.54), and (5.56) as

(2)
5 HZ + Y
0?2 © T Tk,~k )L

(0" 3 _ kW)
Y (k,-K,)L

-

Y(Z)/H;
(k,-k,)L

2
L) G
(k,-k,)L : (5.58)

1+

|
<
jm
w8~
|

Similarly, if we divide the numerator and denominator of
E%. (5.28) by N, we can express the large T asymptotic form of
g5 as
2
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2 1

O 3
2 (gL)2|ATY| /N . | (5.59)

Recalling that o? is the variance of our estimate of L, we can
express the relative variance of our estimate of L for the case
where k =z 0 and k, > 3L~', using Eq. (5.56) and (5.59), as

-1
- L [ (3) _ (Y(1»2 }
A (x,-%,)L

1 (%1&)2/Y(3)

=__& l_ I
MENN: (k,-k,)L

Q
[SEN

|

-
~

(5.60)

Finally, recognizing that H_ 1s negative for both the von
Karman transverse and longitudinal spectral forms, we can express
the correlation coefficient of our maximum likelihood estimates

of 02L and L from Eq. (5.50) as

v u
%,k L

Y(2)/H; 1"
S =Ty (5.61)

1+

which is valid whenever k, =~ 0 and k, > 3L7!,

Equations (5.58), (5.60), and (5.61) are the main results of
this section. Each of these three results is the large T
asymptotic form of its left-hand side that is valid for practical
purposes whenever k =z 0 and k, > 3L™'. It may be seen from
Eqs. (3.35), (3.37), (5.37), and (5.40) that for both the von
Karman transverse and longitudinal spectra, we have

: 117.97
©  70.78

(5.62)

_ - _ 5
H = 1.6667 = - %,
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where -5/3 1s the exact asymptotic result. The other dimension-

(1) (2) (3)

less constants Yy > Y , and vy are defined in terms of the
funection H(E) by Eqs. (5.45), (5.49), and the first line in

Eq. (5.55) respectively. The last line in Eq. (5.565) shows that
only two of these three constants is independent. The function
H(E) = H(Lk) is defined by Eq. (5.37), where (d/dL)inF(k;L) is
given by Eqs. (3.35) and (3.37) for the von Karman transverse
and longitudinal spectra respectively. L is the integral scale
associated with the von Karman spectral forms, k, and k., are the
lower and upper wavenumber limits used in the likelihood
equations — see Eqs. (3.32) and (3.33) — and L = VI is the length
of the record.

Coefficient of Variation of Mean-Square Velocity Estimates

We have shown earlier that, as T »+ «, our maximum 1likelihood
estimates of o¢?L and L are asymptotically governed by a joint
normal probability density with mean values equal to the true
values of o2L and L, and with variances o2 and o2, and correla-
tion coefficient p, as given above. In particular, Eq. (5.60)
provides a general expression for the variance of our estimate
of L (divided by the square of its mean).

To get a comparable expression for the variance of our esti-
mate of o? where

2
g2 = &L (5.63)

we must consider the ratio of our estimates of ¢2L and L as indi-
cated in Egq. (5.63). Since these estimates of ¢?L and L are
asymptotically governed by a jolnt normal probability density,
the estimate 6% of o? (obtained by dividing an estimate of ¢2L

by an estimate of L) is governed by whatever probability density
describes the ratio of two (correlated) normal variates each
having a nonzero mean value. When both mean values are zero the
resulting density of the ratio is a Cauchy probability density —
e.g., pp. 153-154 of Ref. 43 — however, when mean values are not
zero the resulting density apparently cannct be written in closed
form — e.g., p. 411 of Ref. UB. Fortunately though, we may
obtain an expression for the variance of our estimate of o¢?

using the method of Ref. 49 — even though its distribution cannot
be expressed in closed form.
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Merrill (Ref. 49) obtains a series expansion for the vari-
ance of the ratio of two normally distributed variables which
converges rapidly (at least in the asymptotic sense) whenever
the coefficient of variation of the variate in the denominator
is small — which in our case occurs whenever o¢3/L? is small —
as will generally be the case. Adapting Merrill's notation to
our case, let

2

2
02 Gl
v: o= — vy =

o2 (62L)2 . (5.64 a,b)

Then Merrill's I, is our 0% and Merrill's I is our estimate of
02. At the top of p. 56 of Ref. 49, Merrill gives an expression

for the variance of the ratio — i.e., the variance of our esti-
mate of o? — which is

~2 —_ 2\ 2 2 2 L 3
Var(c?) = (o*)*{vi-2pv v,+v +8v,-16pv v,

2..2 2..2_.2 6 5
+ 3vivo+5p V1v2+69v1—138pv1v2

+ 15vivi+5hp?vivite ..}, (5.65)

where we carried through powers of six in the product v, and v,.

We are primarily interested in cases where v% and vg are
small in comparison with unity. From Egs. (5.58) and (5.60),
we see that v% and v§ are made small by increasing the length
L of the turbulence record. In fact, when Egs. (5.58), (5.60),
and (5.61) are substituted into Eq. (5.65) — using Egs. (5.64 a,
b) — we see that the right-hand side of Eg. (5.65) takes on the

appearance of a series in powers of L/L. If we retain only the
first power in L/L, the relative variance of our estimate of
o2 becomes
~2 2
Var(c®) _ v2-2pv_v_+vZ2+40 L , (5.66)
(02)2 1 1 2 2 L2

where, according to Egs. (5.64 a,b), v% and v are given by
Egs. (5.60) and (5.58) respectively, and p is given by Eq.
(5.61). The coefficient of variation of our estimate of o?

is [Var(o2)/(c2)27%.
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The case of most interest is that for which k2 is very
large. To study this case, we can let (k,-k )L»~.” For this
limiting case, we see from Eq. (5.51) that p = 1. Hence, as
(k,-k,)L»~, we have from Eq. (5.56) by retaining only terms
of first degree in L/L:

Y?Egizl ~ (Vl_vz)2 > (k,-k )L
o
_ <33 _ % )2
L o2l
- 5y Q-lngh® E, (K, =k )L, (5.67)
v

where we have used Egs. (5.64 a,b), (5.58), and (5.60) in going
to the second and third lines, and where we have retained only
the first power of L/L in the last line of Eq. (5.67).

Numerical Results and Discussion

Let us turn now to numerical evaluation of the above
described quantities for the von Karman transverse and longi-
tudinal spectra. We shall treat the longitudinal case first
since the integrals requlired for this case are easler to
evaluate than those for the lateral case.

The case of most interest is that for which k, is very
large, so we can let (k,-k,;)L»» as before. 1In this case, we
see from Egs. (5.58), (5.60), (5.61), and (5.67) that

Y(3) is the constant of primary importance — since we have
already determined that Hy, = -5/3 [Eq. (5.62)] for both the
von Karman transverse and longitudinal spectra.

(3)

The expression we shall use for vy is that given by

the first line in Eq. (5.55):

32 [Coace)-n, 17, (5.68)

0
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where H(&) is defined by Eq. (5.37). For the von Karman longi-
tudinal spectrum, we have from Egs. (5.37) and (3.37):

117.978% . (5.69)
1+70.78¢%

H(E) = -

Hence, H(E)-H_ can be expressed as

117.97 117.97&2

H(E) - H = - , (5.70)
70.78 1+70.78¢2
which is of the form
) .
H(E) - H, =2 -2 - & | (5.71)
1+bg? b(1+bg?)
where
2, =3 - (5.72)
and
b = 70.78. (5.73)
(3)

From Egs. (5.68) and (5.71) it follows that y
for the longitudinal von Karman spectrum as

can be expressed

o]

L3 - (%>2 l ?Iiﬁi?fz a | (5.74)

which is of the form of Eg. (3.251.11) on p. 295 of Ref. 50:

5

I (5.75)
0
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Hence, for the von Karman longitudinal spectrum, we have

v(3) - (5)2 =22 T - 0.2593. (5.76)

From Egs. (5.60) and (5.76), we therefore have for the rela-
tive variance of our estimate of L as (kz—kl)L+w,

QqQ
[SEESEN

= 3.856 L/L, (5.77)

gy

whereas, from Egs. (5.62), (5.67), and (5.76), we have for the
relative variance of our estimate of o? as (k,-k )L+,

Var(?)

(c2)2

= 1.714 L/L, (5.78)

where only the first power of L/L has been retained in Eq.
(5.78). Equations (5.77) and (5.78) apply to the von Karman
longitudinal spectrum. L is the integral scale of the turbulence
and L is the length of the record.

Let us now turn to evaluation of the relative variance of our
estimates of L and o2 in the case of the von Karman transverse )
spectrum. For this case, we again require the evaluation of Y(3
given by Eq. (5.68) where H(g) is defined by Eq. (5.37). For the
von Karman transverse spectrum, we have from Egs. (5.37) and (3.35):

117.97£2(1-188.7582)

H(E) (5.79>
(1+70.78£2)(1+188.75£2)
which is of the form
H(g) = —287(1=cE®) (5.80)
(1+b&E2) (1+cE?)
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where

a = 117.97
- =3

b =70.78 = 2 a
_ _ 8 |

¢ = 118.75 = = b . (5.81)

From Egs. (5.80) and (5.81), we can see that
- lim - _a . _a_. _>
H = H(E) = - Do . (5.82)

Therefore,

at?(1l-cg?)
(1+b&2)(1+cE?)

o

H(E)-H_ =

_a [(1+bE®) (1+cE?)+bE2(1-cE?)
b (1+b&2) (1+cE?)
2
-2 [ 1+(2b+c)E : (5.83)
(14bE2)(1+cE?)

Combining Egs. (5.68) and (5.83) gives us the desired expression

for Y(3) in the case of the von Karman transverse spectrum:

R 2 z
Y(3) _ (%) J [ 1+ (2b+c)E ag
. L(1+bg?) (1+cE?)

%)zi [1+(2b+c)E2]2 ac (5.84)
_ (1+bE2)2(14cE?)?

i
nJ -
A

since the integrand is an even function of &.
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The integral on the right-hand side of Eq. (5.84) is readily
evaluated by contour integration using the method outlined on
pp. 584-587 of Ref. 51. This integration is carried out in
Appendix I and yields

L3 o <%>2[(b+c)(7P2+c2) _ b(b2+b$+202)] (5.85)
4p™ c )

(c__b)a 2 3
When the exact values for a, b, and ¢ given by the left-hand
sides of Egs. (3.41), (3.39), and (3.40) respectively [compare

Egs. (3.39) to (3.41) with Egs. (5.81)] are substituted into
Eq. (5.85), we find for the von Karman transverse spectrum that

v3) 2 o.uuzr . (5.86)

From Egs. (5.60) and (5.86), we therefore have for the relative
variance of our estimate of L as (kz'k1> L»e,

Q

2
2

-2 = 2.254L/L , (5.87)

N

whereas, from Egs. (5.67), (5.82), and (5.86), we have for the
relative variance of our estimate of o? as (kz—kl)L+m,

Var(G?)

(c?)?

= 1.002L/L , (5.88)

where we have again retained only the first power in L/L in Eq.
(5.88). Equations (5.87) and (5.88) apply to the von Karman
transverse spectrum. L 1is the integral scale of the turbulence
and L is the length of the record.

Equations (5.77) and (5.78), which apply to the von Karman
longitudinal spectrum, and Egs. (5.87) and (5.88), which apply to
the von Karman transverse spectrum, are the main numerical results
of this section.

Discussion. It 1s instructive to compare the values of rela-
tive variance given by Egs. (5.78) and (5.88), which apply to the
von Karman longitudinal and transverse spectra respectively, with
the values of relative variance of estimates of o2 obtained by
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squaring and averagilng veloclty records. The relative variances
obtained for this latter estimation procedure are 1.732 L/L

and 1.069 L/L [Egs. (D.28) and (3.21) of Ref. 18] for von Karman
longitudinal and transverse records respectively. Hence, the
relative variances given by Egs. (5.78) and (5.88) of maximum
likelihood estimates of ¢? — i.e., 1.714 L/L and 1.002 L/L —
are only very slightly smaller than the values of 1.732 L/L and
1.069 L/L for the squaring and averaging estimation procedure.
Nevertheless, the maximum likelihood method relative variances
are smaller, as we would expect from the asymptotic efficiency
normally associated with maximum likelihood estimates.

The relative variances of 3.856 L/L and 2.254 L/L for maxi-
mum likelihood estimates of L for von Karman longitudinal and
transverse records respectively are, perhaps, of more interest.
In contrast to the squaring and averaging procedure used to esti-
mate ¢?, reliable estimation procedures and associated variances
for obtaining the integral scale from velocity records have not,

in the past, existed.
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AIRCRAFT RESPONSE EXCEEDANCE RATES

In Secs. 4.2 and 4.3 of Ref. 19, a series expansion was
developed for the mean rate of exceedances N,(y) with posi-
tive slope of a generic aircraft response variable past a
specified level y. This result was derived for aircraft
responses to the three component turbulence model of Egs.
(1.2) to (1.4) of the present report. However, these results
are valid only for situations where the three locally sta-
tionary conditions described in Ref. 19 are satisfied. 1In
this section, a new expansion for the mean rate of exceedances
N4y(y) is developed; this new result depends only on the
validity of the first locally stationary condition described
by Egq. (1.8). This condition depends on turbulence properties
only, and is believed to be virtually always satisfied. Thus,
the results derived herein apply to superscnic aircraft with
arbitrarlily high Mach numbers — as well as to subsonic aircraft
for which the results of Secs. 4.2 and 4.3 of Ref. 19 should
apply. However, the derivations contained in the present
section are considerably more involved than those of Secs. 4.2
and 4.3 of Ref. 19, and in order to hold the complexity within
bounds, we have assumed in the present section that the slow
turbulence component wg(t) <im Eq. (1.2) 1s negligible in com-
parison with the fast component wf(t).

Application of Rice's Formula to Intensity
Modulated Gaussian Processes

In the derivation to follow, we shall evaluate Rice's
expression for the mean number of crossings with positive slope
per unit time N,(y) of a stationary process past the level y.
It was shown by Rice [5] on p. 189-193 of the Wax edition
that, for stationary processes, one has

N, (y) = [ yp(y,¥y)dy, (6.1)
0

where p(y,y) is the joint probability density function of the
aircraft response y and its time derivative y. A derivation
of Eq. (6.1) also can be found on pp. 45-47 of Crandall and
Mark [29].



To evaluate N4(y) from Eq. (6.1), we shall use an exten-
silon of the methodology developed in Sec. 2 of this report
for evaluating the first-order probability density of the
process y(t). On the first two pages of Sec. 2, we showed
that the aircraft response y(t) conditioned on the process
or(u) for all -w<u<t is strictly Gaussian with zero mean
value, but generally nonstationary. This conditional re-
sponse process 1s denoted by {y(t)|op(u)}, -w<u<t. Therefore,
the joint probability density function of y(t) and y(t) con-
ditioned on or(u) for -w<u<t is a joint normal density
function with zero mean values for y(t) and y(t). Let us
denote this joint conditional density function by p(y,y|or),
where g¢ denotes the infinite dimensional "vector" oge(u),
-o<yu<t, as described on the third page in Sec. 2 of this
report. We therefore may formally express the unconditional
Joint probability density of the aircraft response and its
first derivative as

p(y,y) = J p(y,ilgf)p(gf)dgf , (6.2)
0

~

where p(gf) denotes the probability density of the infinite
dimensional vector gp = of(u), -o<u<t, and where the symbolic
integration is taken over this same infinite dimensional space
as described on the third and fourth pages of Sec. 2 of this
report. Substitution of Egq. (6.2) into Eq. (6.1) yields

N, (y) = J ¥ f p(y,¥lgp)p(gp)dg dy (6.3)
0 %
When g¢ = op(u), -»<u<t is specified, the joint density
of y and ¥ is a joint normal density with zero mean.values in
y and § [Ref. 39, pp. 147, 148] — i.e.,

- - . 2 2
p(ys¥lae) = p(y,9log,00,u )
2 2 L] 2. 2
log -2 . +o
. ( o7 HygYyto Y )
2(02c5%-u2.)
1 ( yo3 My
- 2 2 .2 \% € ?
2TT(OyO$7-UyS’) (6.“)
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where we have defined the conditional expectations 0;, 0§,

and Uyy as

0§ = cé(t) = Ez{yz(t)]cf(u)}, —o<u<t (6.5a)
03?, = o:;f‘,(t) = EZ{S/"(t)Icf(u)}, —w<u<t (6.5Db)
Mog = Hyp(8) 2 B Iy(6)F(8)|op(wI,  -w<ust, (6.5¢)

each of which is a stochastic function of time t that is deter-
mined by the behavior of the stochastic modulating process
cf(u) over the time interval -«<u<t. Thus, the expectation
operations in Egs. (6.5a) to (6.5c) are taken over variations
in the (stationary Gaussian) modulated process {z(t)} in our
turbulence model of Egs. (1.2) to (1.4). [Recall that, in

this section, we are assuming wg(t) = 0.] We have indicated
that these expectations are with respect to the process {z(t)}
by placing the subscript "z" after the expectation operator

"E" in Egs. (6.5a) to (6.5c).

Noting that Egq. (6.2) expresses the mathematical expec-
tation of the response joint conditional density p(y,ylgf)
with respect to the modulating process {op(u)}l, -w<u<t, we
can also express Eg. (6.2) as the expectation

p(y,y) = ng{p(y,YIgf>}, (6.6)

which when combined with Eq. (6.1) yields

N, (y) = J yE, {p(y,9lop)}ay , (6.7)

f
0

which we shall now proceed to evaluate in terms of measurable
metrics of the modulating process {Gf(t)}.

139



Series Expansion of Conditional Joint Probability
Density of Aircraft Response Displacement and Its Derivative

As in Sec. 2, we are Interested here in excitation
processes we(t) = op(t) z(t) where typical fluctuations in
of(t) are not more than about one-third* of the mean value
of op(t). Different sample functions op(u), -w<u<t give
rise to different values of the three parameters oy(t)
0§(t), and Uyy(t) in the probability density, Eg. (6.4),

as may be seen from Egs. (6.5a) to (6.5c¢c). Hence, in a
manner analogous to the approach used in Sec. 2, we require
here a truncated Taylor's series representation of the Joint
normal density, Egq. (6.4), in the three-dimensional para-

meter space 0;, Oé, and Mo The expansion will be centered
about the point defined by the mean values E?, Eg, and ﬁ;;

f the variables o2 (% g?(t and L(t):
0 vari y( ) y( ) s uyy( )

¥The approximate upper 1limit of one-third for the typical
fluctuation Sop(t) relative to the mean op is arrived at as
follows. Denoting expected values by overbars and fluctua-
tions by delta, we have

o =0 + 80 , (a)
hence
0% = (0)? + 2060+(80)? , (b)
and
o2 = (0)® + (80)2, (c)
since &0 = 0 by definition. Therefore, from (b) and (c), we
have
% - 0% = 2580 + (86)2% - (80)°2
~ 2080 , (a)
singe, by assumption, we have 8o << o. From (d) it follows
a
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AY 2
o§ 2 ch{cy(t)} (6.8a)
7 A 2 '
c§ fo y(t)} (6.8b)
and
T T 2B {u, () (6.8¢c)
Hyy o.My 2 '

where we have agalin used the subscript on the expectation
operator to denote the process that the expectation is taken
with respect to.

E{(c2-02)2} =~ 4(0)2E{(80)2}. (e)

From (c), we also have when 8o << g
o? = (0)?; (1)

hence, combining (e) and (f) yields

E{(oi:cz)z} N E{(gé)z} , (g)
(c?)? (0)?

where E{(80)?%} is the variance of 8o since 60 = 0. Applying
(g) to oy, and using the definition of y given by Eq. (2.27a),
we have

2_0_2>2} 5
L = (h)
)2 iy O f

E{(60,)%) 7 rE{(o
- {2
(oy) L(g

14

~2
y

Moreover, from Flgs 9 to 16, we see that the largest value
of y that glves "good" accuracy is vy = 2. For this value, we
have ( 4y )=*% = 8-% = 0.354 which is slightly more than one-
third. Therefore, since typical relative fluctuations in

(t) should never be larger than those of oge(t), we conclude
t%at whenever typical fluctuations in op(t) are not larger
than one-third of the mean value of op(t), our methods should
provide reasonably accurate results.
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In order to evaluate a common form of the multi-
dimensional Taylor's series [e.g., p. 338 of Ref. 35], we
require an expression for the square of a trinomial:

(x+y+z)? (x+y)2 + 2(x+y)z+z?

H

x2+y2+4z2+2xy+2xz+2y2Z. (6.9)

By combining Eq. (6.9) with Eq. (57) on p. 338 of Ref. 35,
we obtain a Taylor's series representation of the right-hand

side of Eq. (6.4) about the point o§, 05, hyy' Taking the

the expected value of this representation with respect to
the process op(t) yields in straightforward fashion

ch{p(Y>YI0f)} = p(y,7| ; _g’ “yy)
+ ch{(o _;Hp(l’O’O)(y’Y'%’ %’ “—;S:)
+ ng{(cé—gg)}p(o’l’O)(y’ylgg’ E?’ E;;)
+ Eof{(uyy—ﬁ;g)}p<o’o’l)(Y,Y|g§: Eg’ E;;>

g 2_7y2 (2,0,0) |l 2 2
+ 5 By {(o2-02)?}p (y,9lo7, o

+
N+
t
—_~

Q

2 T7y27..(0,2,0) T3 7
-2 s , 02 )
5 cy) Ip (y ylcy b )

+
noj -
~
~~

)Z}p(o’o’g)(y,ylgi, o2, u_.)

<

B I
o My TNyy

+ By ((02-02)(02-00)1p 10 (y y[07, 0T, W)
+ By (o500 (b0 ST RS S OB I T T

- (0,1,1) T 2
+ E } > 0,5 O
Of{( H oy><uyy yy) p (v, v 95

+ higher order terms, (6.10)
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where Eq. (6.9) was used in writing out the last six terms
in Eq. (6.10). 1In Eqg. (6.10), we have used the definition

i,i.k T o
plisds )(y,9192, 035 W2

yy
143 +k
A 81 J 2 2
= - - p(y,yloZ, o2, u_.)
3(52) 5 (02)ds(u .)k y y yYy _
y ¥ vy 52 = 57
v " %y
g2 = g2
y y
Hyy ~ Hyy

(6.11)

where p(y,&lc;, 0§, uyy) is the joint normal density given by
the right-hand side of Eq. (6.4), and where the partial

derivatives are evaluated at the expansion center defined
by Egs. (6.8a) to (6.8c). The partial derivatives evaluated
at this expansion center are not random variables. Thus,
the expectation operation with respect to the process op(t),

ng{p(y,y[gf)}, in the left-hand side of Eq. (6.10) yields

the expectations E0 {+ee} of the various expansion coefficients

f
in the right-hand side of Eq. (6.10). 1In Eg. (6.10), we have
included all terms with partial derivatives of order i+j+k = 2

or less, which contain all terms with powers of two or less

in products of the random variables (o3-c3), (c(-03),

(U= yy)' It is an implicit property” of  the Taylor's series
exggn81on that the terms written out in the right-hand side
of Eq. (6.10) are the most significant terms — provided that
fluctuations in of(t) about its mean values are not too large

as indicated earlier. Since, we have
E {(c%2-02)} = 0
o, ( v Gy)
E {(g2-02)} = 0
op ( 5 oy)
and
E_ {( )} =0, (6.12)
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the first three "correction" terms to p(y,y|0§, O;’ uyy)
in the right-hand side of Eq. (6.10) are identically zero.
We shall now proceed to develop expressions for the six

remalning correction terms written out in Eq. (6.10).

Evaluation of derivatives of joint Gaussian probability

density. The somewhat tedious job of evaluating the six
partial derivatives p<l’J’k)(y,y[o;, Gé, uyy), i+j+k = 2,
required in Eq. (6.10) is carried out in Appendix J of this
report. The resulting expressions evaluated at the expected

values of o2, o2, and uyy for use in Eq. (6.10) are given

by Egs. (6.15) to (6.20). In evaluating these expressions
we have used the fact that

uyy = Eof{uyy} =0 , (6.13)

which is shown later by Eq. (6.74). Equation (6.14) gives

the joint density of y and § also evaluated at the expected

values of oé, 05, and u_.:

vy
A ST i
2 o§ 2 0§
p(y,yl o8, 02, ug) = ———— e (6.14)
2Tr(g7 62)7
y oy
—_— 2 4
p(2:0:00(y 5102, o2, u ) = —P 3-6L+ =L (6.15)
y y yy 4(;7)2 52 (02)2
; y y
(0,2,0), .1=27 =% ~——y _ D e ¥, 3 6.16
¥ y y
(03092) ¥ __2 2 o = p —_— Lz l - 'Lz‘ 6 l
p (y,y|0y, g2 “yy> = =% (1 0_2> ( = (6.17)
y ¥ y y
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—_— —_— 2 .2
p(l’l’O)(Y,B.fIGz, 0%, W_.) = :p:_ 1l - _X: 1 - £ (6.18)
y y ¥y kg2 g2 o2 o2
y Oy y v
(1,0,1) e s T
p (y,yloy, s “yy)
2
= A ¥ (X—Z_ - 3) — (6.19)
7 —\%5 T2 \% \o —Z\%
2(cy) (Gy) (oy) y (oy)
(0,1,1) e s
o 3 o
= — B - - -3 7 (6.20)
2(62)5(52) 72 (52)% |(52) 72 (52)%
y g Ng v y

In each of the above six relationships, p is the joint normal
density function given by Eq. (6.14); furthermore, in arriving
at each of these six relationships, we have used the fact that

uyy = 0 as indicated by Eq. (6.13).

Series Expansion for Aircraft Response Exceedance Rates

According to Egs. (6.7) and (6.10), we must now multiply
each of the above seven expressions, Egs. (6.14) to (6.20),
by ¥ and integrate each resulting expression with respect to
y from zero to infinity. Examining Egs. (6.14) to (6.20), we
see that these integrations require evaluation in the follow-
ing expression for values of n from 1 to 5:

A [T.n e s e
I(n) = f ¥ p(y,y|c§, 05, uyy)dy . (6.21)
0

These integrals are easily evaluated with the aid of Egs.
(3.461-2) and (3.461-3) on pp. 337 of Ref. 50 yielding:
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|

2 \1 2 5
05 \=s 20 - 2
= L ¥ y ﬁy 2
I(I’l) o E).—? e ( 5 ) (2 0'5-,) )
y
n=1,3,5,°*"" (6.22)
and
.
—\2 252 ) n-1
I(n) = = °y e Yo é(n_1>..(;?>
2T P 2 Ty ?
y
n = 2,&,6,"', (6-23)

where in Eq. (6.23), we have used the definition

(n-1)11 & 1.3.5.00(n-1), (6.20)

and in Eq. (6.22) we have used the usual definition of a
factorial. Evaluation of Egs. (6.23) and (6.24) for n from
1 to 5 gives

1 - y—-—
—\?2 252
o2 v
I(1) = éL- L1 e (6.25)
m 0_2
y
1(2) = (3)* P 1 (6.26)
I(3) = 2 % I(1) (6.27)
I(4) = 3(%)%(E§)§51(1) (6.28)
and
I(5) = 8 <E§>21<1> : (6.29)
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When Eq. (6.10) is substituted into Eq. (6.7), we see
that we must multiply each of Egs. (6.14) through (6.20)
by ¥ and integrate the resulting expressions from zero to
infinity. When these integrations are carried out with the
aid of Egs. (6.25) through (6.29), we find that the mean
threshold crossing rate with positive slope N+(y) can be
expressed as

. A
e\ 2 —_—
o2 o0 2
- 1 v
N+(y) = o :X_ e 1
0,2
y
E_{(c%2-02)?%}
) y oy 2
2 2 2 2\ 2
(oy) oy (oy)
E 2..——? 2
1 Gf{(oy oy) }
8 (53)7
- 2
. Of{(uyy uyy) } ( Xi)
-2 — 7 T =
Oy O'_y O'y
E 2_52)(02-02
. Of{(0y cy)(oy oy)} X i
- T 52 52 ( - g?)
y v y

ﬂ)% Op Y Y UTYY VY [3 y 3
~\8 7\ Y2 (T B —7yh 2 %g]
(og) (cy) (o) (o)

4+ higher order terms. (6.30)
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In arriving at Eq. (6.30), we have made use of Eq. (6.12)
and the fact that

® . (0,1,1) T 7 )
: , 02 ) day =0 . )
J v p (y>Y|0y 05> uyy) y =0 (6.31)
0

The "higher order terms" in Eq. (6.30) arise from the terms
with the same label in Eqg. (6.10). As mentioned earlier,

the "slow" turbulence component wg(t) in the turbulence model
of Egq. (1.2) has been assumed to be zero in arriving at Eq.
(6.30). We also have used the fact that Byy = 0 in arriving
at Eq. (6.30). Later on in this section, we shall show that
the last displayed term in Eq. (6.30) is identially zero,

[Eq. (6.71)].

The problem of finding expressions for the expansion
coefficients in Eq. (6.30) will be addressed next.

Expression for Exceedance Rate Expansion Coefficients

Here, we shall derive a general expression for the
expansion coefficients ch{-'°} in Eq. (6.30). We shall

then show how the various individual expansion coefficients
in Eg. (6.30) can be computed for an arbitrary aircraft
modeled as a linear time-invariant system.

All three conditional response variables defined by
Egs. (6.5a) to (6.5¢c) can be expressed by the single quantity

M = Hpe(8) & E 0T ()5 () o (w), - mcust,

j + k 2, (6.32)

where superscripts j and k denote powers of y(t) and y(t)
respectively, and Ez{+*+|op(u)}, —o<u<t denotes expectation
with respect to the process {z(t)} conditioned on the process
{op(u)} for —~<u<t, where z(t) and op(t) are components in
our turbulence model of Egs. (1.2) to (1.4). Thus, by
comparing Egs. (6.5a) through (6.5c¢) with Egq. (6.32), we

see that
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Oy = My for j =2, k=0 (6.33a)
2 = P =

Gy = ujk for j = 0, k = 2 (6.33b)

uy§ = ujk for J =1, k =1 (6.33¢)

Using the notation of Egs. (6.32) and (6.33), we can now
express any of the expansion coefficients in Eq. (6.30) in
the general form

ch{(ﬂj 'k'—aj Tt ) <u,j"k"—a,j Hkll)}

e

B (Eztyj'<t>yk'<t>|gfj - Eztyj'<t>9k'<t>|gf])

X

<Eztyj"<t>yk"<t>(gf1 - B o (0le T ) (630

where we have used g. to denote conditioning on op(u), -e<u<t
as before, and where the overbar denotes an expectation with
respect to the process {or(t)}. The individual expansion
coefficients in Eqg. (6.30§ that are particular cases of
Eq. (6.34) are obtained using the values of j', k', j", and

" : 2 2 N
k" shown in Table 1. The last entry, E; {(oy Gy)(uyy Uyy) s
is not required for use in Eq. (6.30) because its "multiplier"
was shown to be identically =zero.

To obtain a general expression for u-k(t) defined by
Eq. (6.32) that covers all three cases 1liSted in Eq. (6.33),
let us now define the generalized "instantaneous cross-
correlation function" of the aircraft impulse response as

=)

(t,8) & hy(t = 5) n(e + 5, (6.35)

¢
hjhk

where h;(t) and hp(t) are tabulated in Table 2 for the three
cases listed in Eq. (6.33). Functions Hh(t) in Table 2 are

the time-derivatives of the aircraft impulse response function
h(t). Since convolution of h(t) with the input yields y(t)

as indicated by Eq. (1.21), it follows directly from Egs.
(K.14) and (XK.15) in Appendix K that Table 2 contains the
appropriate definitions of hj(t) and hk(t).
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TABLE 1. VALUES OF THE PARAMETERS IN EQ. (6.34) THAT YIELD
THE INDIVIDUAL EXPANSION COEFFICIENTS IN EQ. (6.30)
Coefficient j! k! " K"
ch{(o§—E§)2} 2 0 2 0
5, [(55-57)") o |2 | o | 2
B (g ) ) 1 1 R
chuo;-@)(o;-@} > 0 o | 2
Eof{(o;—gg)(uyy¥igg)} > | o |1 1 1
ch{(o§—§§)(uyy—ﬁgg)} ”b Nwéih T
TABLE 2. DEFINITIONS OF hj(t) AND hk(t) FOR USE IN EQ. (6.35).
Response variable J k ” hJ(;:h)) "‘"—"*h—l'{’(t*)'
Wiy = O > | o | ae) h(t)
Wiy = o§ 0 2 h(t) 7 hfts
Mip = Hyg 1 1 hEt)IV h(é)m |
]
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To apply the results of Appendix K to the computation
of ujk(t), we further let

x;(6) = x (8) = we(t)op(u) = o, (0)a(t) , (6.36)

k

- 0L <0

in Appendix K, where we(t), op(t), and z(t) are components
of our turbulence model of Eqgs. (l 2) to (1.4), and where
the conditioning operation in Eg. (6.36) 1nd1cates that oe(t)
is to be treated as a known function. With the interpreta-
tions provided by Eqgs. (6.35) and (6.36), the instantaneous
cross-spectrum input-response relation of Eq. (K.21) becomes

o (f,tlg.) = f o (f,t-ulg.)e (f,u)du , (6.37)
yjyk b ) W f hjhk
where @y y (f,t]gf) is the instantaneous cross-spectral
Jk
density of ujy(t) [defined by Eq. (6.32)], o, , (f,t) is the
j 'k

Fourier transform with respect to T of Egq. (6.35) as inter-
preted by Table 2, and ® (f,tlgf) is the Fourier transform
with respect to 7 of We

¢ (T,tlgf) 4 op(t - %) op(t + %) ¢, (T) (6.38)
f

where ¢Z(T) is the autocorrelation functilon of the component
z(t) of“the turbulence model of Egs. (1.2) to (1.4), and
op(t) is to be considered as a known function in Eq. (6.38).

When we apply the locally stationary approximation pro-
vided by the first term on the right-hand side of Eq. (2.45),
we have

@wf(f,tlgf) ~ o%(t)@z(f) s (6.39)

where &,(f) is the Fourier transform of ¢ (t). By substi-
tuting Eq (6.39) into Eg. (6.37) and int&grating over all
f, we obtain
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t) = f ® (f,t]g.)drf
Y59y £

-—C0

f o2 (t-u) f ¢Z<f>¢hjhk<f,u)dfdu , (6.40)

=00 -C0

where we have interchanged orders of integration in going to

fthe second line, and where we have used the fact that

@y v (f,t]gf) is the conditional instantaneous cross-spectral
3%k .

density of {yJ(t)} and {yk(t)}, j + k = 2, whose integral

over —o<f<eo yields uip(t) — see Eq. (6.32) and the general

property of Eq. (K.li%. By extension of Eq. (2.54), let

us now define

ne>

f o (e, , (f,t)ar , (6.41)

Y (t)
hjhk’z K

-0

where as noted above, we have

e

® f hj(t - %) hk(t + %) e_iZWdeT, (6.42)

-CO

(£,t)
hshy

where h.(t) and hp(t) have the interpretations listed in
Table 2¢ Substituting Eq. (6.41) into Eq. (6.40) yields the
desired form for ujk(t):

biCe) = | GNP (6.43)

-0

In particular, taking the expected value of u.k(t) with respect
to the process of(t) gives J
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Ty J ggyh.hk’z(u)du ; (6.44)

-0

hence, from Egs. (6.43) and (6.44), we have

I I L SN (6.45)

-C0

We recall now that each coefficient in the left-hand
column of Table 1 is of the form of Eq. (6.34); thus, each
coefficient is the expected value with respect to {Gf(t)}
of cross-products of the form of Eq. (6.45). Furthermore,
we see that Eq. L_ 45) is the convolution of the stochastic
function [0#(t)-0%] with the "system characterization"

Y (t). Thus, we can use the result, Eg. (K.26)

h. hk,z

of Appendix K, appropriately interpreted, to obtalin a general
formula for E f{(u"k'_uj'k')(“j"k”_uj”k”)}' To apply Eq.
(K.26) to thls situation, we require the Fourier transform

?h‘hk’ (v) 4 J Th.h .z (t)eletht . (6.46)
. Jk

Thus, applying Egq. (K.26) to the present situation gives

E_ {(u, j'k! Ej'k')(“j”k"'aj”k")}

® ,(v)y¥ (=v)¥ (=v) dv , (6.47)
J Of‘ h hk"Z hj!lhklliz

where ®02(v) is the power spectral density of the process
£
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{02(t)-02} which has no d-c value, the functions ¥ (v)

g hif hjhk
are defined by Eg. (6.46) with primes added as appropriate,
and the superscript asterisk denotes the complex.conjugate.
The negative arguments in Eg. (6.47) arise from the fact
that we have used a positive exponent in Eq. (6.46), whereas
the transforms Hs:(f) and Hk(f) in Eq. (K.26) are defined as
in Eq. (1.9) wit% negative exponents. Equation (6.47) is
the main result of this subsection.

Expressions For System Characterizations

Here, we examine the system characterizations with respect
to the process {z(t)} that are defined by Eqs. (6.41) and
(6.46). First, we note that Yy h Z(t) also can be expressed
as Jjk?

’Z(t) = f @Z(f) Re % n (f,t)dr (6.48)

y
h,hy . 3%

where Re 0 (f,t) denotes the real part of & (f,t). To
hjhk hjhk
show this, we note from Egq. (6.42) that % n (f,t) can be

expressed as Jk

- * T T
(Dhjhk(f’t) = J hj(t 2)hk(t + 2)003(2Tff’[)d_’1'

-—00

_1 f n (6 - Dn (6 + Hsin(anro)ar. (6.49)

-00

Since hj(t) and hy(t) are real, the cosine integral in Eqg.

(6.49) %s real, whereas 1 times the sine integral is

imaginary. Moreover, the sine integral is an odd function

of f. Since %,(f) is an even function of f, the contribution

of the sine integral in Eq. (6.49) to the integral Y1 h Z(t)
7k’
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in Eq. (6.41) is zero. We are left with the contribution
of the cosine integral, which is the real part of @h.hk(f,t),

as indicated by Eq. (6 48). Since 9¢,(f) is real, <t follows

that Y (t) also is a real functzon of t.
h. hk’
From the fact that Yh . h Z(t) is real, it follows from
Eq. (6.46) that Jk?
Yn.n 20V = ¥VEn (V) (6.50)
Jk’? Ik’
where the asterisk denotes the complex conjugate. Hence,

instead of Eq. (6.47), we also can write

E {(uj'k'—ij'k'>(uj"k"_1-_l_j"k")}

o (V)Y (v)y* (v)dv . (6.51)
[ Gf‘ hjlhk" hJ hk"’

Moreover, since both quantities Ui (t)-Hs k in Egq. (6.51) are
real as can be seen from Eq. (6.&%) and he fact that

Yh " (u) is real, by taking the complex conjugate of both
k,

51des of Eq. (6.51) it follows that we also have the second
alternative form

Eof{(“ k! HJ ! ) (“j"k"_ﬁj "k")}

(v)¥ (v)dv, (6.52)
k"Z hJ hkn: )

where we have used the fact that the power spectral density
2(v) of {oé(t)—o%} is real.
f
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We see — e.g., from Eq. (6.51) — that the transformed
system characterization Yh h Z(v) defined by Eq. (6.46)

J7k?
o +hAa Ao 4t xr riAa~NI1IT A Frar AAAMmrmiItt ads S A A A Avranad Arm
Lo U.LJ.C LiuallUJ.Ul_y L C\.iu.L.L C\J.—.L vl buxuyuuaviu L UL U LI CA.LJG. 1o LULL
coefficients E  {(u. - ) -u. }. Insertin
O—f (UJ'k' UJ'k' (UJ"k" U‘J"k”) g
6

Eq. (6.41) into Eqg. (
integration yields

.46) and interchanging orders of

?h.hk,z(v) N { 2,(f) f Qh.hk(f’t)ei2wvtdtdf (6.53)
= f @Z(f’)HS.*(f + \Zi)Hk(f - %)df (6.50L)

-0

where we have used Eq. (K.23), and Eq. (K.8) applied to h.h
Functions Hj(f) and Hy(f) in Eqg. (6. 54) are the Fourier
transforms of hi;(t) and h(t) as defined by Eq. (1.9) where
individual 1nterpretatlons of h (t) and hy(t) are given in
Table 2.

=

According to Table 2, we require three forms of
thhka(v) which are Yhh,z(v)’ Yhh,z(v)’ and yhh,z(v).

We can immediately write out the first of these three forms
using Eq. (6.54) as

Ton,, () = | 8, (0)H(r- Dirs(er Dac, (6.55)

—00

which we have discussed earlier — see Eg. (2.62).

In order to put ?hh Z(v) and ?hh Z(v) in the form of Eq.
3 3

(6.54), we require the Fourier transform of the time derivative
of h(t). Let us denote this Fourier transform by placing a
dot over H(f) — i.e., we define H(f) as

(e & f B(t)e 12Tl | (6.56)

~—CO
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The Fourier mate to Eq. (6.56) is

R(t) = J H(r)et® tqr | (6.57)
Furthermore, the Pourier mate to Egq. (1.9) is

h(t) = f H(r)el?™ s | (6.58)
Differentiating both sides of Eq. (6.58) with respect to t
gives

R(t) = f somrH(R)eT2 T lar | (6.59)
hence, comparing Egs. (6.57) and (6.59) yields

H(Ff) = i2nfH(F) , _ (6.60)

which relates the Fourier transform H(f) of h(t) to the
Fourier transform H(f) of h(t).

Using Egs. (6.54) and (6.60), we now can express

i,z (V) s

Y (v)
Vg7

-0

_ * v V
= U2 J f2¢z(f)H(f- 5)H*(f+ §>df

-00

- nzvzf o (£)H(f- %)H*(f+ %)df ) (6.

-—C0
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J ¢ (f)(=1)am(f+ %)H*(f+ %)(i)zﬂ(f_ %)H(f_ %)df
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From Eq. (6.55), we see that the integral in the second term
is ¥y 5(V); hence, Ypp (V) can be expressed as
2 s

3 = ® 2 v v ~
Yhn,z (V) = “sz £20, (DH(f- DHEF(F+ Dar-n?v?y, (v) . (6.62)

-00

However, the autocorrelation function of the process {z(t)}
whose sample functions are the time derivatives of z(t) is
the negative of the second derivative of the autocorrelation
function of {z(t)} — i.e., -¢"(t) [see, for example, p. 21 of
Ref. 37]. Furthermore, by di%ferentiating twice with respect
to T the relationship

6 (1) = J o (£t Tar (6.63)
one finds
o0(1) = -f um2e?e (f)em " ar (6.64)

—00

from which it follows that 4n®f?¢,(f) is the power spectral

density of the process {Z(t)}. We therefore can express
Yﬁﬁ,z(v) as

S - . o225

Yhh,z(v) Yhh,z(v) T2V Yhh,z(v) (6.65)

where we have defined

(v) 4 Mﬂzj f2®z(f)H(f— %)H*(f+ %)df . (6.66)

-0

Ynh,z

Finally, we consider ?hﬁ Z(v). By combining Egs. (6.54)
>
and (6.60), we have in this case
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Von, (V) = f o (DE*(£+ Y)(1)2n(e- VH(e- Yar
= izwf £o_ (£)H(f- %)H*(f+ %)df
- iwvj o (f)H(f- %)H*(f+ %)df ) (6.67)

Lol

However, from Egs. (35a) and (35b) of Ref. 34, we see that
[H(f- %)H*(f+ %)] is necessarily an even function of f since

¢, (f,t) is an even function of f. Furthermore, %,(f) also
is an even function of f. Hence, we always have

f £o_(£)H(f- %)H*(f+ %)df =0 (6.68)

-0

since the integrand in Eq. (6.68) is an odd function of f.
Thus, combining Eq. (6.67) with Egs. (6.55) and (6.68), we
have

i g (V) = =iV (v) (6.69)

which 1s the desired expression for ?hﬁ Z(v)
3

Summary. Equations (6.55), (6.65)-(6.66), and (6.69)
provide expressions for Yhh,z(v)s Yﬁﬁ,z(v)’ and Yhﬁ,z<v) as
a function of the power spectral density @Z(f) of the process
{z(t)} of the turbulence model of Eqs. (1.2) through (1.4)
and the complex frequency response function H(f), Eq. (1.9),
of the relevant aircraft response variable. These exXpressions
for Yhh,z(v)’ Yﬁﬁ,z(v)’ and Yhh,z(v) are to be combined with

Eq. (6.51) to obtain the various coefficients
Eof{(ujlkv"ujvkl)(ujnkn"ankn) by applying the rules in
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Tables 1 and 2. By carrying out this procedure, we shall
now show that the second to the last coefficient in the
left~-hand column of Table 1 is identically zero.

According to Tables 1 and 2, we have from Eq. (6.51)
for the second to the last coefficient in the left-hand
column of Table 1:

By (0570 Gy ) I 002 (T o (TR L ()

-0

in v@G%(v)l?hh’Z(v)lzdv, (6.70)

—CO

where we have used Eq. (6.69) in going to the second line.

The integral in the second line of the right-hand side of

Eg. (6.70) is real; hence, the entire right-hand side is

imaginary. However, the left-hand side of Eg. (6.70) is

real. It follows that the integral in the second line of

the right-hand side must be zero. This property also follows

from the fact that the integrand in the second line of Eq.

(6.70) is an odd function of v since & ,(v) and |y (v)]?®
04 hh,z

are both even functions of v. The even property of

l?hh z v)|? follows from Wiener's theorem and the fact

that Yhn,z () is real. Equation (135) of Ref. 34 is a state-

ment of Wlener s theorem, where we remind the reader that
pw(T) 1is an even function of tv. We therefore have

ng{(c -0 )(uyy yy)} =0 . (6.71)

The validity of Eq. (6.71) also could be argued on physical
grounds from the fact that it is the coefficient in Eq. (6.30)
of an odd function of the response variable y.

Furthermore, we shall now show that

ne>

Hyy ch{uyy(t)} =0 (6.72)
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as was stated earlier without proof by Eg. (6.13). From
Eqs. (6.44) and (6.46), we have

- = ~2 ” 7 o ' '
H., =@ f Y (t)at = o4 ¥ (0)

Jjk £ ) hjhk’z_ b hjhk’z . (6.73)
Hence, for j = 1 and k = 1, we have according to Table 2 and
Eq- (6-73)3

p— - 7 o~ -
uyy Of Yhh,Z(O) 0 ] (6.7”)

where the right-hand equality follows from Eq. (6.69).

Final Expression For Aircraft Response Exceedance Rates

Incorporating the result, Eg. (6.71) into Eq. (6.30), we
obtain now our final expression for the mean rate of exceed-
ances N+(y) of our aircraft response variable past the level

v

y
- —_— 2
_\k 7 2 2
1 O'; 2 20’y Eo_f{<0'3-/_—0'$7) 1
N+(y) = ﬁ O:_Z— e 1 - — N
8(o?
y (oy)
2
E 2__2
Gf{(oy OY) } 2 4
+ 3 - 6 y: + _BL. 2
8(32)2 o; (032,)
y
°E {(u .-u. .02} + E_ {(02-02)(c2~02)}
1 ¢ (hyy ¥y op Y Y (o35 L3
- b _ )
2 % y
y ¥
+ higher order terms, (6.75)
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where the "higher order terms" are the same as those in
Eq. (6.30), which arise from the higher order terms in

Eq. (6.10). Neglect of these higher-order terms should
not lead to substantial error provided that typical fluc-
tuations in the modulating process og(t) are not larger
than about one-third of the mean value of op(t). The
turbulence model for which the result Eq. (6.75) applies
is that of Egs. (1.2) to (1.4), where here the "slow" com-
ponent wg(t) 1s taken to be negligible in comparison with
the "fast" component wf(t) = of(t)z(t).

To evaluate the parameters and coefficients in Eq.
(6.75), we require

-'2_:_00 2
oy f @wf(f)[H(f)[ dar (6.76)
and
o§ = J @Wf(f)]H(f)lzdf (6.77a)
= unzf £26_ (f£)|H(f)]|2ar , (6.77b)
W

-00

where ¢ (f) is the power spectral density of the turbulence
f

process {we(t)}, H(f) is the complex frequency response of

the aircraft response variable of interest as defined by

Eq. (1.9), and H(f) is the Fourier transform of the time

derivative of the impulse response function of the aircraft

response variable of interest. Equation (6.77a) is a direct

consequence of Eq. (1.21), and Eq. (6.77b) follows from Eq.

(6.60). Furthermore, from Eq. (6.51) and Tables 1 and 2,

we find that the coefficients in Eq. (6.75) can be expressed

as
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By 10029002 = [0 2 (0) 17y, (0] %y (6.78)

9 b9
ch{(og—%)z} = [:DG;(V) Wﬁﬁ,z(v)lzdv (6.79)
ng{(“yy“ayy)z} = I:@O%(v)|?hﬁ,z(v)|2dv (6.80)
and
Eof{<o;-a§><o§-5§>}
- Jw @G%(v)qhh,z(v)y;h,z(v)dv . (6.81)

-0

@Gz(v) is the power spectral density of the process
f -
{c%(t)-0%}. Two methods for computing this spectrum are
given on pp. 79-83 of Ref. 19. System characterizations
(with respect to the process {z(t)}) ¥ (V) Fpee _(Vv),
hh,z hh,z

and Yhh(v) are given by Egs. (6.55), (6.65)-(6.66), and
(6.69) respectively. &5(f) is the power spectral density
of the process {z(t)} which can be taken as the normalized

spectrum @w (f)/f @W (£)df because of the locally stationary
f f

-—C0

assumption Eq. (1.8a), and the normalization assumption,
Eq. (1.4).
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Limiting cases of the result given by Eq. (6.75) can
be studied in a manner analogous to that used in Secs. 2.5
and 2.6. It can be shown that the result given by Eq.
(6.75) reduces to the appropriate result in Sec. 4.3 of
Ref. 19 when fluctuations of of(t) are assumed to be
negligible over the duration of the aircraft impulse
response h(t).
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APPENDIX A

DERIVATION OF CORRECTION TERMS TO THE GAUSSIAN PROBABILITY
DENSITY FUNCTION FOR USE IN EQUATION (2.12)

Equation (2.9) expresses the correction terms in Eq.
(2.12) as derivatives of the Gaussian density function:

2

A
k 2
k 20
P (ylop) = —F— e % , (A.1)
~ d(o2) Vono? Y
y y gi=0
vy Oy
where yz
202
p(o)(ylgf) - 2 e y (A.2)

|

‘/21T02
y

Differentiating Eq. (A.1) with respect to o} yields

p(l)(y|9f> = [(—%) (G;)_ak e %

A~

N
_1 2 2 _
+ (02) e %% L (g2) 2}

2 y
p(Ylo ) 2
A2 R D ARNSEE | I (A.3)
202 c?
y y
in agreement with Eq. (2.14a). In similar manner, we find
o (y15,) = =4 P (yl8,
d(o})
p(ylo.)
= ~ T vt _ ¥4 3], (A.4)
M(c§ 2 (c§)2 0§
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and

d
d(c§)

p(3)(y|5f) p(z)(ylaf)

_ p(Ylgf) [ yS _ 15 yu

8(0;)3 (0;)3 (032,)2

+ 45 X2 15] , (A.5)
o.2
v

in agreement with Egs. (2.15b) and (2.16Db).
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APPENDIX B
DERIVATION OF EQUATION (2.23)

Equation (2.23) is derived by substituting Eq. (2.20)
into Eq. (2.19c) and performing the resulting integration:

y2
® 202 — Y1
p(y) = X j Lo 2 X (yoi/oD)
vem 0 Vo'§ oyZI'(Y)
2 )5
-yoZ/o
x e y ¥ d0§ (B.1)
Let us define
g é % 0'2 ; (B.2)
oz Y
y
hence,
ag = L go2 (B.3)
0§ y

Substituting Egs. (B.2) and (B.3) into Eq. (B.1l) yields
2
© T 2(02/Y)E
p(y) = —— L e y
2ﬂ(0§/Y)T(Y) 0

x gY73/2 78 g . (B.14)

Let us now define the normalized variable

5

(B.5)

Q
LS )
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Since dn = dy/#gg, the probability density of n is

w _ xYn?
1 J e ZE EY—3/2 e_g dg
v2n/y T(v)y

p(n)

/ Yy-1/2
= L > (1] K /2y [n )
V3T7Y T(y) Vel y-1/2

/o7

— -1/2 —
v2yIn Y K 10 (2¥In])
(B.6)
where Eq. (3.471.9) on p. 340 of Gradshteyn and Ryzhik [50]
was used in going to the second line, and where Kp(+) is

the modified Bessel function of the second kind of order n.
Equation (B.6) is the same as Eqg. (2.23) in the main text.
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APPENDIX C

CLOSED FORM EXPRESSIONS FOR Kn(x) AND py(n) IN
TERMS OF ELEMENTARY FUNCTIONS

From Eq. (4) on p. 108 of Relton [51], we have the
recursion relation

2n

Kn+l(x) = = Kn(x) + K (x) , (C.1)

n-1

whereas, from Eq. (8) on p. 109 of Ref. U7, we have
%
K (x) = Ky (x) = (—2“—X> e™* . (c.2)
Combining Eqs. (C.1) and (C.2) gives

K,,(x) = (1 + %) K () . (c.3)

Combining Egs. (C.2) and (C.3) with Eg. (C.1l) gives

> W

+ %) K, (x) . (C.h)

X

Ksm(x) = (1 +

In like manner, combining each previous two values of Kp(x)
with Eg. (C.1l) yields, successively:

K7/2(X) = (l + g + _—E + 1*3) Kl/z(x> (C.5)
X X
K, (x) = (1 + 12+ 45 4 105 105) Ky (x) (C.6)
X x2 x3 Xt ]
K, ()= (1 + 154 105 4 420, 945 9”5) K, (x) (c.7)
X2 X3 X’+ X5 2

Ky, (X)= (1 4 21 4 210 , 1260 , H725 , 10395 , 10395)

X Kl/z(x) (C.8)
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_ 28 378 3150 17325 62370
Kisp (x) = (1 + =+ 2 + 3 + o + >
, 135135 135135) K, (x) (c.9)
XG X7 2
- 36 630 6930 51975 270270
K17/2(x) - (l + _}—(__ + X2 + X3 + Xq * XS
+ 945945 + 2027025 4 2027025) K, (x) (C.10)
XG X7 XB 2
K (x) = 1+ 45, 990 , 13860 , 135135 , 9u5945
19/2 X %2 %3 x4 x5

6 7 8

X X X X

4729725 . 16216200 , 34459425 3“”59“25) Ky (%),
9 /2

(C.11)

where K%(x) is given in terms of elementary functions by Eq.
(c.2).

Combining Egs. (C.2), (C.3), (C.5), (C.9), and (C.10),
successively, with Eg. (2.23), we obtain the following ex-
presslons for pY(n) defined by Eq. (2.23)¢

p,(n) = e~72Inl (C.12)

1
V2

p,(n) % (2|n|+1) S (C.13)
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X

p,(n) = (x® + 6x% + 15x + 15) e~

3

27/2><3
where x = V8|n]| (C.14)
P,(n) = Ty3egg (x7 + 28x° + 378x® + 3150x"

+ 17325x® + 62370x2 + 135135x + 135135) e *

where x = V16|n| (C.15)

3
217’28!

py(n) = (x® + 36x7 + 630x° + 6930x°

+ 51975x* + 270270x% + 945945%x?
+ 2027025x% + 2027025) e %

>

where x = vI8|n| and 8! = 40320. (C.16)
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APPENDIX D

ALTERNATIVE SERIES REPRESENTATION OF EXPANSION
COEFFICIENT OF THE NONGAUSSIAN TERM

Writing v for f in Eq. (2.58), we may express the co-
efficient p'2) in Eq. (2.24) as

O.2

y
2$2) Jm 2 2 (V) |¥. _(w)|% av . (D.1)
oy ’ op h,z

Let us define

6,00 & [y (8) vy (Eve) ab (D.2)

- 00

which is the "autocorrelation function" of the deterministic
system characterization vy, Z(t) defined by Eq. (2.54). Then,
5

from Wiener's theorem — e.g., p. 54 of Ref. 34 — it follows
that

0y (8) = [ 17y 017 T ay (0.3)

-0

Furthermore, from Egs. (2.81), and (D.3), it follows by
applying the generalized form of Parseval's theorem to Eq.

(2)

(D.1) that we may express Hy2' as
y

=
N
|

2 - Iw b92(t) 0, (6) av

JIEFORNORI (0. 4)

0
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where the second line follows from the fact that ¢02(t) and

¢Y(t) both are necessarily even functions of t. r

Let us now consider situations where cf(t) fluctuates
little over durations comparable with the duration of the
aircraft impulse response h(t). In these situations, the
nominal correlation time of o%#(t) is large in comparison
with that of yp_,(t) — as is illustrated in Fig. D.1. Ex-
amination of FiZ. D.1 suggests that we represent ¢02(t) by a

low-order polynomial over the range O0<T<T,, where T, 1is the
time interval over which ¢Y(t) is not negiigible for t>0:

n .
() = ) b.td 0<t<T (D.5)

where the bj may be interpreted as the one-sided Maclaurin
expansion coefficients of ¢02(t),
£

0410 (o+)
by = __ETT——_ , (D.6)
jt

where ¢é%)(o+) denotes the jth "right-hand" derivative of
£

¢Oz(t) evaluated at the origin. Substitution of Eg. (D.5)
f

into Eq. (D.4) yields the desired series representation of

uég):
y
n @ .
u§§> =2 ] b, J td ¢ (t) at . (D.7)
y j=0 ) Y

Using Eq. (D.6), we see that the first term in the ex-
pansion, Eq. (D.7), is
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—==—->f

FIG. D.1. BEHAVIOR OF ¢>02(t) AND ¢Y(t) NEAR t = 0 FOR CASE
.f.‘

WHERE VARIATION IN o2(t) IS SMALL OVER DURATION
OF h(t). f
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20, | 9,(6) db = 0p2(0) [ o (6) at

-0

o

® 2
¢O§(0) [J Y,z (P) dt]

-0

2
= ¢é%) (rgog) , (D.8)

where the second line was obtained using Eq. (D.2), and the
third line was obtained using Egs. (2.87) and (2.92). Com-
paring Egs. (2.96) and (D.8), we see that the first terms in
the series of Egs. (2.96) and (D.7) are the same. However,
the remaining terms differ because of the presence of odd
powers of j in Eg. (D.7).

Although the first correction term to the term repre-
sented by Eq. (D.8) in the series of Eg. (2.85) had a very
satisfying interpretation as we showed in Eg. (2.99), the
series, Eq. (D.7), generally will be better behaved in
practice because it utilizes the "one-sided" expansion of
¢02(t) shown in Egs. (D.5) and (D.6) which does not require

r
that $02(t) be continuous at the origin. Thus, the existence

dt
whereas, it is required in the expansion of Egq. (2.85) —
see Eq. (2.93).

dO’Z 2
of E{(——ﬁ) } is not required by the expansion of Eg. (D.7),

Finally, we note that the "one-sided moments" of ¢Y(t)
in Egq. (D.7) can be evaluated from the derivatives of the
unilateral Laplace transform of ¢,(t) if that transform
can be evaluated in closed form. Also notice that the
characterization of ¢o%(t) used in Eq. (D.5) 1is its one-sided

power series expansion indicated at the very end of Sec. 1.
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APPENDIX E

PROOF THAT REAL AND IMAGINARY PARTS OF FOURIER SERIES
COEFFICIENTS OF A PERIODIC RANDOM PROCESS ARE
UNCORRELATED FOR m#n, WHERE m,n>0

In Eg. (3.5), we have expressed the complex Fourier
series coefficients of a periodic random process

w(t+pT) = w(t) , p=0,*¥1,%2,...

by
T/2 .
_ 1 -i2mnt/T
¢, = T J w(t) e dt
-T/2
= a_n - :Lbn R
where an and bn are real. Consider
% — s .
cck (an lbn) (am+1bm)
= (anam+bnbm) + 1(anbm_ambn)
and
¢ Cm = (anam—bnbm) - 1(anbm+ambn)

(E.1)

(E.2a)

(E.2b)

(E.3)

(E.4)

Taking the expected values of Egs. (E.3) and (E.4), we find

that if
* —_— -
E{c_c*} = 0 and E{c_c } = 0

then we must have

E{anam}- —E{bnbm} E{bnbm} =0

and
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E{anbm} = E{a b } = —E{ambn} =0 . (E.7)

Satisfaction of the two conditions in Eq. (E.5) therefore
guarantees that all pairs of the real and imaginary parts of
the complex coefficients cp are uncorrelated. Cf. Davenport
and Root [39], pp. 91,92.

From Eq. (E.2a), we have

1 (1/2 (T/2 -i2m(nt,-mt,)/T
E{c c¥} = = Elw(t,) w(t,)) e dt,dt,
m 2
T Zrse Loy
1 (T/2 (T/2 -i2m(nt -mt,)/T
= = ¢ (t,-t,) e dt,dt,
2 W
T° Znyo Zoyo
(E.8)

If, in the inner integral, we transform t, tor using

T=t, ~t, (E.9)
hence, t2 =T + tl,We have
-i2n(nt,-mt,)/T —i2ﬂ(n—m)t1/T i2mmt /T
e = e e ; (E.10)
therefore,
T/2 . T/2-% R
Efc c¥} = 1 J e—12w(n—m)t1/T 1¢ (T)el2ﬂmT/T drdt,
n m Tz W
-T/2 -T/2-%t
1 T/2 —i2ﬂ(n—m)t1/T
= T J e dtl
~-T/2
T/2 .
« % ¢ (T) elZ']TmT/T ar , (E.ll)
w
-T/2
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where the second line is a consequence of the fact that the
autocorrelation function ¢W(T) of a periodic random process
is itself periodic with the same period T — i.e., Davenport
and Root [39], p. 91 — and the fact that the inner integral
in the first line in Eq. (E.11) is independent of t,, since
its integrand is periodic with period T. PFurthermore, for
m # n, the first integral in Eq. (E.1l1) is identically zero;
hence,

E{cnc;} =0 , m#F¥n (E.12)

which 1s the first of our two conditions in Egq. (E.5).

To check the second condition, we note from Eq. (E.2a)
that cy = cfm, and hence, from Eg. (E.11), we have

il

E{cncm} E{cncfm}

T/2 —i2ﬂ(n+m)tl/T

1
= T‘ e dtl
-T/2
T/2 .
« L J o (1) e~i2mmt/T 4o (E.13)
W
-T/2
Consequently,
E{cncm} =0 , m#F-n . (E.14)

It follows that Egs. (E.6) and (E.7) are satisfied for all
m,n>0, provided m # n, which is what we sought to prove.

As pointed out in the main text, when w(t) is generated
from a stationary Gaussian process, the entire set of
variates ap,b, is jointly Gaussian since Eg. (E.2a) is a
linear transformation of w(t). Hence, provided m # n, for
all m,n>0, all ap's and by's are statistically independent.
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APPENDIX F

METHOD FOR SOLUTION OF EQUATION (3.26) FOR
INTEGRAL SCALE OF von KARMAN TURBULENCE

The likelihood equation for the integral scale of tur-
bulence with negligible low frequency component wg(t) is
given by Eqg. (3.26):

N [d ] [ Si 1 N S,
— anF ()| |=F~ -5 )} =—k5| =0, (F.1)

;L4 fdL i F. (L) ™ N 521 Fy(L)
where we have reversed the roles of i and J in comparison with
Eg. (3.26). Following the notation of Eq. (3.30), we define

G, (L) 4 é% pnF, (L) . (F.2)

Let us now substitute Eg. (F.2) into Eq. (F.1l) and define
after minor rearrangement

N S

S
A 1 J 1 ) (F.3)
= G. (L) [« } -

i N ji FJ(L) Fi(L);

E(L)

Z
o~

i=1 =1
Then, according to Eq. (F.3), the value of L that satisfies
Eq. (F.1l) is the value for which E(L) = 0.

To illustrate a method for obtaining the solution
E(L) = 0 of Eq. (F.3), we consider a vertical turbulence
velocity record that is assumed to obey the von Karman
(transverse) power spectral form. From Egs. (3.34) and (3.35)
we have for the von Karman transverse spectrum:

1+188.75L2k§

Fi(L) (F.4)

'y
F1+7o.78L2k§] 6

and
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117.97L2k§(1-188.75L2k§)

(F.5)

[l o

G; (L) =
(1+7o.78L2k;)(1+188.75L2k§)

The solution E(L) = 0 of Eg. (F.3) is most easily obtained
by trial and error. In carrying out the solution for the
vertical record under consideration, we used a value for the
uppermost wavenumber corresponding to j = N in Eq. (F.3) of
ky = 3.0 x 107% cycles/meter which yielded a value of N = 6326
points in the summation in Eg. (F.3).

The actual value of L = 309.4 m was obtained as follows.
First, a trial value of L = 305 m (1000 ft) was chosen. The
value of E(L) for this trial value of L was then computed and
stored using Eg. (F.3). Since the value of E(L) obtained was
negative, a second (larger) trial value of L was chosen which
was 335.5 meters (1100 ft). Using Eg. (F.3), a new value of
E(L) was computed and stored using this second choice of L.
We then possessed two values of E(L) corresponding to the two
trial values of L. Linear interpolation then was used to esti-
mate a new (3rd) value of L corresponding to the value of
E(L) = 0. For this third value of L, the true value of E(L)
was then computed using Eq. (F.3). The resulting value of
E(L) had a positive sign; hence, a new (fourth) trial value
of L was chosen which was 3.05 m (10 ft) smaller than the
third trial value of L. The value of E(L) corresponding to
this fourth trial value of L was then computed and stored
using Egq. (F.3). Finally, from the third and fourth trial
values of L and the corresponding values of E(L), a fifth
value of L was computed by linear inftferpolation corresponding
to the value E(L) = 0. This fifth value of L = 309.4 m was
used as the solution to the likelihood equation (F.1l). These
five values of L and the corresponding values of E(L) are
plotted in Fig. F.1, which shows the local very nearly linear
behavior of E(L) as a function of L.
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APPENDIX G
TRADE-OFFS BETWEEN CHOICES OF &y AND m

Here, we describe considerations to be taken into account
in choosing values of £ and m in the constrained least-
squares estimation procedure described in Sec. 4. Upper
limit &y in Eq. (4.5)_determines the interval 0 < & < gy over
which the parameters c¢Z4, L, and a, to ap in the autocorrela-
tion function model of Eg. (4.1) are obtained by minimization
of the integral squared error E in the constrained least-
squares fit procedure. The parameter m is the degree of the
polynomial in Eq. (4.1) that is used to represent the auto-
correlation function of the low-frequency turbulence component
Wwg(t) over the interval 0 < § < &H.

Intelligent choices for values of £y and m to be used in
the minimization procedure are not generally independent. One
reason for this lack of independence is the fact that our
representation in Egs. (4.1) and (4.5) of the von Karman
component 0% ¢K(£;L) of the autocorrelation function is not

orthogonal with our representation of the low-freguency com-
m .

ponent ) aiEl of the autocorrelation function over the
i=0

interval 0 < & < &g. Thus, the low-frequency component auto-

m
correlation functilion representation Z aiEi has the potential
i=0
for representing a portion of the von Karman component of
the empirical autocorrelation function R(&) in Eg. (4.5) in
the integral squares sense. However, if for given values of
m
£y and m, z aiEi can represent, exactly, the low-frequency
i=0
component R(E) over 0 < & < &y, and if the "fast" component
of R(Z) has exacg%y the appropriate von Karman form for some
values of L and op, then this lack of orthogonality between

m
029, (E5L) and izoaiai will not be a problem. Th%s, our goal
should be to choose values of Ey and m so that E a.t. can

do a good job of representing the low-frequency component of
the empirical autocorrelation function R(E), while simultaneously

m
attempting to minimize the capability of ) aiEi to represent
1=0
the von Karmawn component of R(E).
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To aid in implementing the above italicized rule, let us
m .
now consider the capability of Z aigl to represent the
i=0
von Karman component 02¢K(£;L) of the autocorrelation function
over the interval 0 < § < EH' Thus, for both the von Karman
transverse and longitudinal autocorrelation functions ¢x(E;L),
we determine the set of coefficients aj, i = 0,1,++-,m that
minimize the integral-square "error"

&H
e 4 { [o%¢, (E5L) -

0

1

20 aiiijzdg. (G.1)

To find the a; that minimize £, we differentiate Eq. (G.1) with
respect to aj, J = 0,1,+++,m which yields

€y m . .
3E  _ _ 13
oo = 2 f [02¢K(£,L) - iZO a,¢g Jev dg. (G.2)

J 0

0, J = 0,1,+++,m

The solution to the set of equations (3E/3a:) =
%rom Eg. (G.2), this

determines the set of a:; that minimize E.
set of equations can be " written as

EH m EY s+
czf £J¢K<E;L)d£ - ) aif £1tdag = 0, § = 0,1,+-+,m (G.3)
0 1=0 0
or
n gHi+j+l £y ;
2 -ml— ai = Ozf g ¢K(gSL)dgs J =0,1,+¢°,m, (G.4)
i=0

0

which is a set of m+l linear simultaneous algebraic equations
for the a;, 1 =O,1,---§m in terms of £y and von Karman auto-
correlation function o“¢x(&;L). These a, minimize E.

To write these equations in normalized form, let us define,
as before,
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|
>
ey

, &1 5 T “ (G.5a,b)

and

o (E3L) = 9 (8/L) = ¢,(E) , (G.6)

as in Egs. (4.18) and (4.20). Using Egs. (G.5) and (G.6),
we have, after dividing Eq. (G.4) by 02L3+1,

Z i+j+l > = f g ch(g)dE: J = Osl:"':m: (G'7)
1=0 o]

0

which is a set of equations for the normalized coefficients
Liaj/c?. For a given value of m, the normalized solutions to
these equations depend on only one dimensionless parameter &y.
Thus, for either the von Karman transverse or longitudinal
autocorrelation functions, we can solve the set of equations
(G.7) for Liaj/c?, i = 0,1,+++,m for any family of choices of
EH = EH/L and m.

We shall find it convenient to have an explicit formula
for the least integral-square "error" E in terms of the nor-
malized solution vector Llaj/o?, i = 0,1,+++,m to the set
of equations (G.7). Squaring the integrand in Eq. (G.1) and

rearranging terms, we have
L fEH , o EH 5 EH/m )\ °

E=o f og(EsL)aE ~20% [ aif E gy (£31)dE + | izoaia g,

(G.8)

0 1= 0 0

or dividing by o*L and introducing the notation of Eq. (G.6),
we have
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EH_ m ortH gt
£ - [Maremyaen -2 ) —2 [T EL g (e/mag/n
J 1=0 ! *

Caal

T .
T (D)az

i~ 3

-

ST )
e
QY

Eﬁ m Lia. 3 ’ _
+ f ) = 1) at , (G¢.9)
) \i=0

where we have introduced the notation of Eq. (G.5a) and (G.5b).
However, expanding the last term in Eq. (G.9) yields

i

I3 m L a. .\? m Lia. g, I3 .
JEH( 2 1 —E_l) dz— - Z z 1 . f H €l+Jd€
5 i=0 o? i=0 j=0 o* %

m m Lta, 1da T FTIFL
_ z z i j ~H
J i = 1+j+1
j=0 o? 120 oz THI*!
m L‘ja. EH—J—
= 1 —+ f 9 (E)AE
j=0 o2
0
j_ _—
m L7a EH—-'-—- o
) - f E 9, (E)AE (G.10)
i=0 o 5
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where the second to the last line follows from Egq. (G.7);
therefore the last two lines are valid only for the dimen-
sionless solution vector Llaj/o?, i =0,1,+++,m that minimizes
E. Substitution of Eg. (G.10) into Eg. (G.9) yields

= i =
£ L7a

EH_ o m . s .
o f PRBIE - 1 f Tl (Dt (G.11)
o i=

2
0

0 g

which 1s valid only for the set of dimensionless coefficients
Lias/0?, i = 0,1,+++,m that is the solution to Ea. (G.7) —
i.e., the set that minimizes E.

If all a. = 0, we have from Ea. (G.1),

ey
P2(T)AT (¢.12)

0

E
"L

1

A S
= 02 (£3L)AE/L

0

Q

where the right-hand equality follows from Eags.
Hence, let us define a normalized "error" E as

(G.5) and (G.6).

Eo, L

i
tic>

(G.13)
[MazmraE

0

Furthermore, let us define a normalized set of coefficients by

_ o Ly

a., = . (G.14)
1 0_2

Using this latter definition, our set of equations (G.7) for
the ai's can be written as

(G.15)
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Cn_, .
whereas dividing Eq. (G.11) by [ H¢§(g)dg and using the

0
definitions of Egs. (G.13) and (G.14), our equation for the
normalized "error" E becomes

m Ey_
I oa; J TEg, (B)aE
E=1 - . (@d.16)

o

For either the von Karman transverse or longitudinal
autocorrelation functions ¢x(&), Egs. (G.15) and (G.16)
determine the normalized "error" E in the least-sguares best

m
fit of ) a.g
¢K(£). This value of E 1s dependent on choices of Eﬁ and m.
Figures G.1 and G.3 show this devendence of E on &y and m for
the von Karman transverse autocorrelation function, and
Figs. G.2 and G.4 show the same dependence for the von Karman
longitudinal autocorrelation function. According to our above
italicized statement, large values of tE are desirable. There-
fore, for several representations

i . .
to the von Karman autocorrelation function

m .
= . 1
9(g) = 0g¢, (E5L) + iEO a;& 5, 0 28 2 gy (G.17)

of an empirical autocorrelation function R(E), all having
approximately the same capability for representing the lLow-
frequency component of R(E), but differing in values of &y
and m, the representation with the pair of values &y = L&y
and m yielding the largest value of E as determined by
Figs. G.1 to G.4 should yield the most reliable value of L.

This rule of thumb suggests the following procedure for

estimating autocorrelation parameters by the methodology of
Sec. 4.
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Compute the empirical autocorrelation function R(E) —
e.g., by the method outlined in Reference 18.

By visual inspection, choose the Largest value of &gy
m X

for which 2 aigl can be expected to provide a good
i=0

representation of the low-frequency component of R(E§)

for each of several values of m, say m = 1,2,3, and 4.

A different value of &y will generally be chosen for

each different value of m.

For each pair of values of &y and m, compute L, o%,
8,52,,°**,ay by the method described in Sec. 4. Plot
the resulting representation, Eq. G.17, against R(E&)

to insure adequacy of the fit for each such computation.

For each such fit — i.e., for each pair of values of
€y and m — determine the value of E from Figs. G.1 or
G.3, or from Figs. G.2 or G.4, as appropriate for the
von Karman transverse or longltudinal cases.

The most reliable fit, 1.e., the most reliable wvalue

of L, should be that corresponding to the largest

value of E. Values of Eg = L&y and m yielding values

of E less than, say, 0.5 may be particularly unreliable
m .

because in this range Z aigl has too much capability
i=0

for representing a portion of the von Karman component

of the empirical autocorrelation function R(g&).
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APPENDIX H
METHOD OF APPROXIMATION OF THE INTEGRAL SCALE AND
POWER SPECTRUM OF THE "SLOW" TURBULENCE COMPONENT ws(t)
Extrapolation of autocorrelation function model. Here,

we develop a simple method of extrapolating the autocorrelation
function approximation QWS(E) of the slow turbulence component

wg(t) given by Eq. (4.2),

m .
6 (&) = ¥ a,gd , 0 <& < kg (H.la)

m

where the extrapolation completes the description of Qw (&)
s
over the entire interval 0 < £ < ». We then integrate the
resulting autocorrelation model to yield an approximation to
the integral scale of the slow component wg(t); we then
Fourier transform the resulting model to yield an analytical
approximation to the power spectrum of the resulting model.

The extrapolation is carried out using the simple expo-
nential decay model

- peOE o
QWS@E) = hAe ) Ey S € < (H.2)

which completes the range of £ not covered by the model of
Eq. (H.1). Parameters A and o in Eq. (H.2) are set by requiring
¢w (£) and its first derivative to be continuous at the point

S

of intersection & = gy of the two models. Using this method,
the values a ,a,,***,ay, and &y completely describe the auto-
correlation modél of Egs. (H.lg and (H.2).
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Differentiating Eq. (H.1) gives

Q%S(E) =a +2af + eec t mamiim—:L
m 1
= 1 Jaelmr 0 <& < gy (H.3)
j=1 7
Therefore, we have
m 5.1
?WS(EH) = jzl Jas&y ) (H.b)

where the prime denotes differentiation. Differentiating Eq.
(H.2) gives

H, Ey & 2 (H.5)

hence, we also have

_och
Q\;f (€H> = —ghe . (H.6>
S5

Dividing Eq. (H.5) by Eq. (H.2) gives

¢ (E)
S = =0 E < E < oo, (H.?)
QWS(EF H-=- "> =
Hence, 1if ¢ (£) is continuous at § = gy, continuity of ¢! (&)

3 S
at £ = gy requires from Egs. (H.1), (H.3), and (H.7) that
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. J-1
; Jang
a = = m 3 > (H.8)
EH

Ie~3

Y a

j=0 7

which 1s an equation for o in terms of the parameters of the
model of Eq. (H.1). To obtain an equation for A, we note from
Eg. (H.2) that we must have

o0&y
(£g) (H.9)

or,

OLE m .
A=e%™H ¥ oa.td, (H.10)
j=o J7H

where Eqg. (H.10) follows from the continuity requirement of
o (&) at ¢ = £y and Eq. (H.1). Equations (H.8) and (H.10)

W
S
yield o and A from the parameters of the model, Eg. (H.1).

Expression for integral scale of slow component. To
obtain an equation for the integral scale of the slow com-~

ponent, we require the integral { ¢ (£)dg. From Egs. (H.1)
W
and (H.2), we have 5 S

o E m . [<9)
f ¢ (&8)ag = J H( ) ang)dE + f pe™%t4e
s j=0
0 0 EH
? (341 ty L—aE|”
= a - + A
J+1
m g -ag
— H A H
= jZO aJ 341 + g € . (H.11)
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The integral scale L is defined as

A1 ®
L = 5;?67 f ¢w(€)d€- (H.12)

0

From Eq. (H.1l1), we see that an expression for A/o is required,
which from Egs. (H.8) and (H.10) is

2

uE
( ) oa. EJ)
A J=0 J

5= - — — (H.13)
) ja.i%—l
j=1 7
Furthermore, from Egq. (H.1l), we see that ¢w (0) = a,. Hence,
s
applying the definition Eq. (H.12) to ¢W (g), we see from
s
Egs. (H.1l1) and (H.13) that
2
O N I S B J_o_i___
W a,l:zp JtL TH m 51
’ I Ja.gy (H.14)
j=1 Y

which is an expression for the integral scale Lw of the slow
S

turbulence component wg(t) in terms of the autocorrelation

function parameters computed by the method described in Sec. 4.

Expression for power spectral density of slow component.
By forming the Fourier transform of the above extrapolated
autocorrelation function model, we obtain an expression for
the power spectral density of the slow component of turbulence:

[s0]

e, (k) (&)cos(2mkg)dE

S

">
‘-'—ﬁ
@]

(g)cos(2mkg)dg. (H.15)

1
[\
RN
8
-0
=
0]
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Introducing Egs. (H.l) and (H.2) into Eq. (H.1l5) and carrying
out the integration, we have

3 tH_; ® _-at

@w (k) = 2 .Zoajf £ cos(2vk£)d£+2A[ e cos(2rkE&)dE. (H.16)
s 3= ) £

H

Using formula 2.633-2 on p. 184 of Ref. 50 for the first of
the above two integrals and a result in the well known
Burington tables for the second integral, we obtain

o (k) 2{ ? % '(j> n (2mkE, + = &m)
= a. 21! ———F = sin(2mw + 5 &7
Vs j=0 dfe=0” ¥ ome) Pt S
j 1 . 1.
—j!(%) ——=——— sin (~ Jﬂ }
J (2WK)J+1 2
[ |
~2A) ————— [27ksin(2nkE,)-acos (2mkg
a2+ (2mK)? f . (H.17)
However,
JYy = J! _ J!
21(1) = ! G- T2l = (G- (H.18)
and
5 j = i1
J!(j) Jto. (H.19)
Furthermore, for any sum, we have
m j m m
Py -1 ) _ (H.20)

J=0 2=0 =0 j=2%

Incorporating Egs. (H.18) through (H.20) into Eq. (H.17) and
slightly rearranging the result ylelds the desired expression
for & (k):

s
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m m . 1
o (k) = 2{ ) [ o2y 4 gj+l} sin(2meyk + 5 &m)
2=0] 5=y, (G-2)! °H (2ﬂ£Hk)2+l

20 97 (omk)dtL
_ag
2he H .
- == [2wk51n(2ﬂ£Hk)—acos(2ﬂng)] 3 (H.21)
a?+(2mk)?

where expressions for o and A are given by Egs. (H.8) and (H.10).
Equation (H.21) is a closed form expression for the power
spectral density of the slow turbulence component wg(t) in
terms of the autocorrelation function parameters determined
by the method described in Sec. 4.
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APPENDIX I
EVALUATION OF AN INTEGRAL

We evaluate below the integral defined by Eqg. (5.84):

1 2 (% +(2b+c)E%]?
Y(3) -1 (%) J [1+(2b+c)E?] ac. (1.1)
/o (1+bE?)2(14cEg?)?
To evaluate y(3), we shall use the method described on

pp. 584 to 587 of Ref. 52. Equation (I.1l) is of the form of
Eq. (119) on p. 584 of Ref. 52:

J {eee}dg = 271 ) Res(a, ) , (I.2)
Kk

-0

where the points a; are the poles of the integrand that are
located in the upper half plane. The poles of the integrand
occur at the zeros of the denominator of Eq. (I.1), which are
solutions to the equations

(1+bg2)%2 = 0 (1+cg%)2 = 0 . (I.3a,b)
These solutions are, respectively,

= +i/I/b = +iv/I/c . (I.4a,b)

Sy 2
Therefore, the denominator of the integrand in Eq. (I.1) can be
expressed as

(1+bE?)%(1+cE?)? = b2c2(£ + /1_5)2 (E - it)z(& + i—)2(€ - i—_)z

(I.5)

The four factors in the right-hand side of Eq. (I.5) give rise
to poles located at &y = -i/Vb, &, = +i/V/b, &, = -i/Vc,

Ex = +1i/V/c respectively. All four of these poles are of order
two. Thus, there are two poles in the upper half plane which
are located on the imaginary axis at g = i/v/b and g, = i/Vc
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From p. 520 of Ref. 52, we see that for a pole of order m,
we require the residues

1 gt m
Res(zy) = 9y T )(%-7y) f(Z)}] , (I.6)
dz z=zj

where for our application m = 2 and

[1+(2b+c)z?]2

f{z) = (1.7)
bzcz(zz + l>2(z2 + l)z
b c

Thus, we have

(z-2 )2£(z) = [1+(2b+c)z?]? (1.8)

1 b202<z + L ’ z2 + l)2
5 ¢

and

(z-2,)2f(z) = ——L1+(2bre)z7]" (1.9)

2 . 2
b202<22 + %) (Z + l—_
Ve

Differentiating Eqs. (I.8) and (I.9), as required by Eq. (I.6),

and evaluating the resulting expressions at z = z, = ji and

. VD
z =1z, = ji respectively, we have after simplication

Ve

2 2 /— }
+ +
Res(z,) = - (b+c) (7b%+c?) ( 1%) (T.10)
4p 2 ¢

and
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2 c-b

Res(z,) = 1 b(b24+bc+2c?2) (v%')a . (I.li>
(6]

Therefore, from Egs. (I.1l) and (I.2), it follows that

L3 (%)2Wi[Res(z1)+Res(zz)]

v (a)z[(bm)(?}a“cz) _ b(bitbet2e®) | 5,

(c=p)? \P yp o2

which is the result given by Egq. (5.85) in the main text of the
report.
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APPENDIX J

EVALUATION OF SECOND ORDER PARTIAL DERIVATIVES OF JOINT
GAUSSIAN PROBABILITY DENSITY WITH RESPECT TO ITS PARAMETERS

The joint Gaussian probability density of Eg. (6.4) can
be expressed as

p(y,ylo2,02,u ) =2 p = =~ e (J.1)
yoyooyy oph’
where
A8 525202, (7.2)
yy vy
and
2.,2 . 2.2
-0 +2 . -0
2h 2(0%202-u2.) ’
yy vy
where
N a —02y%+2u .yy-cly? (J.4)
y vy Yy

Denoting derivatives by superscripts in parentheses, we have
by differentiating Eq. (J.1),

(1)
p(l) _ p(B(l) B A2A ) (J.5)
and
(2) (1)) 2 2
p(?) - p‘— %[A_g - 3 1)) + A(I)B(l)] + 524 (D) %
( uA
(J.6)
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By differentiating the left-hand portion of Egq. (J.3), we
have

B =2—E N A (7.7)
and
2
(2) (1),(1) (1) (2)
(2) _ N |N 2N A A A
B = 5% l e A + 2 ( i ) - 55 (J.8)

Finally, combining Egs. (J.7) and Eq. (J.8) with Eq. (J.6),
we obtain an expression for the second derivative of
p(y,Y[o§,c§,u y) in terms of the derivatives of A and N taken
with respect %o the same variable:

p(2) _ b ‘%_(A(l))Z = 2@ aan (@) 3 (1 (1)
2A2
L sla@)” RED (W) " a1 WDy s (a(1)7 sz_
A 2 A on2 ’
(J.9)

Equation (J.9) is a general expression that can be used to

evaluate p(E,0,0)’ p(O,2,0), and p(0,0,2) for use in Eq. (6.10)
by differentiating A and N with respect to the appropriate
variables Oy, Oy, OT Myy as indicated by the superscript
notation defineg by Eq."(6.11). A and N are defined by Egs.
(J.2) and (J.4).

Let us turn now to evaluation of the cross-partial deriva-
tives required for the last three terms in Eq. (6.10). These

terms are p(l’l’o), p(l’o’l), and p(o’l’l). In this case,

we shall use a double superscript notation to denote partial
derivatives with respect to whatever two variables are required
to evaluate these terms.
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We can immediately write from Eg. (J.5)

(1,0)
p(1,0) -7 (B(l,o) _ A_EK__) ) (7.10)

and differentiating this expression with respect to the second
variable, we find

F R I 2 N I

N %_(A(l,o)B(o,1)+A<o,1)B(1,oﬂ

; 5(1,005(0,1) g (1,105 (J.11)

From Eq. (J.7), we can immediately write

(1,0) (1,0)
p(1,0) _ 2% (N . _ A - ) (J.12)

no

and

0,1 _ (N(O,l) A(o,1>)

oA N - A (J.13)

Differentiating Eq. (J.12) with respect to the second variable

gives us B(l’l):

g(1,1) _ 1 ;N(1,1> _ a(1,00,(0,1)  ,(0,13y(1,0)
28 A A

+ - A (7.14)

5, (1,0),00, 1) (1,10
AZ
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Finally, substituting Egs. (J.12) to (J.14) into Eq. (J.11)

yields the desired expression for p(l’l):

p(1,1) __p )3 A(J.,O)A(o,1)_A(1,1)130%1\1(1,1) _ gA(o,l)N(l,o)
on? |2 2
(1,0),(0,1) (1,0),.(0,1)
_ % 2(1,0),(0,1) | |34 AA _ AL N 2N

A(l,O)A(O,l)

(0,1) (1,0)
A q(1,0) _ A

AT 7 (0,1)
oA on N N +

NZ
OAZ2

(J.15)

Equation (J.15) is a general expression that can be used to

evaluate p(l’l’o), p(l’o’l), and p(O’l’l) for use in Eq.
(6.10). 1In evaluating the various terms in Eq. (J.15), the
double superscript notation is used to denote derivatives with

(1,1,0) p(1,0,1)

respect to whatever two variables in p , and

p(o’l’l> the partial derivatives are taken with respect to.
A and N are defined by Egs. (J.2) and (J.4).

As a check of Egs. (J.9) and (J.1l5), we note that the

expression for p(l’l) should reduce to the expression for p<2)

when we substitute the right-hand sides of the following

expressions into Eq. (J.15): A(l’o) = A(l), A(O’l) = A(l),
A1) 4@ @00 (D) 0,1 | (@) (1,1 ()
Carrying out these substitutions reduces Eg. (J.15) to Eg. (J.9).

We shall now use Eq. (J.9) to evaluate the terms p(2,0,0),

p(O,2,0)’ and p(0,0,Z) for use in Eq. (6.10), and following
_ . (1,1,0) (1,0,1)
that we shall use Eg. (J.15) to evaluate p , D s
(0,1,1)
and p .

To evaluate p(z’o’o)(y,y|02, o§, Uyy), we identify all
derivatives in Eq. (J.9) as derivatives with respect to c§

[as indicated by Eq. (6.11)]. Therefore, from Egs. (J.2)

and (J.4) we have for evaluation of p(2’0’0)(y,g|c;, 05, “yy):
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LD e 4 (2)

Ml
Q
v
0
o

(J.16)

N1 o g2 N2 = g (J.17)

When Egs. (J.1) to (J.4) and Egs. (J.16) and (J.17) are sub-
stituted into Eq. (J.9) we obtain the desired expression for

(2,0,0) . 2 2
o?, o2, DR
p (v,91 7 0% uyy)

In like manner, we have developed the following table
(1) 42) D) g (@)

required for use in Eq. (J.9) to obtain expressions for

which gives the evaluates of A s

5(2,0,0)  (0,2,0) o (0,0,2)
1
0@ | ] @
p(2:0:0) | 52 0 e 0
y
p(oj230) 0-2 0 _y2 0
y
(0,0,2) .
? -2U_ . -2 2 0
P Hyy Jy

Table J.1. Evaluates of A<l), A(2>, N<l), and N<2) for sub-
stitution into Eq. (J.9) to determine expressions for

(
p(2’0’0), p<0’2’o), and p\0,0,2). Quantities p, A, B, and
N are given by Egs. (J.1) to (J.4) respectively.

Similarly, we obtain Table J.2 for evaluation of pli21:0)

p (15051 g (0,110 o g (7.15):
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(1,0) A(O,l) (1,1) N(l’o) N(O,l) N(lsl)
p(l,l,O) 52 52 1 _g? _y? 0
. ) Y _ B AN N PN
(l,o,l> 0—2 . 2 .
. -2Hu 0 - 2 0
P v sy B i i
(0,1,1) 52 > ,
—-24__, 0 - 2 0
p y ny¥ y yy

(l,O)’ A(O’l), A(l’l), N(l,O),

Table J.2. Evaluates of A
(0,1) (1,1) . . .

N , and N for substitution into Eg. (J.15) to deter-

(1,1,0) (1,0,1) (0,1,1)

mine expressions for p 7 ° s P , and p
Quantities p, A, B, and N are given by Egs. (J.1l) to (J 4)
respectively.

When Eqs. (J.2), (J.4), and the parameter values given in
Table J.1 are substituted into Eq. (J.9), we obtain the

expressions for (2 0,0) (O 2 O), and p(O 0,2) given by

Egs. (6.15) to (6 17) respectlvely, and when Egs. (J.2), (J.4),
and the parameter values given in Table J.2 are substituted
into Eq. (J.15), we obtain the expressions for p(1’1’0>,
(1,0,1) (0,1,1) .
p , and p given by Eqs. (6.18) to (6.20) respec-
tively. Since these derivatives are shown evaluated at the
expected values of the parameters 0 and u s bars are
shown over these parameters in Egs. (6 XB) to (% 20); further-
more, we have used the fact shown by Eq. (6.74) that

pyy = ch{uyy} =0 (J.18)

in the expressions of Egs. (6.15) to (6.20).
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APPENDIX K
DERIVATION OF INPUT-RESPONSE RELATIONS FOR
INSTANTANEOUS CROSS-SPECTRAL DENSITIES OF
NONSTATIONARY STOCHASTIC PROCESSES

Here, we derive input-response relations for instantaneous
cross~-spectral densities that are direct extensions of the
results derived in Ref. 34. Let us define the instantaneous
cross—correlation function of two real, generally nonstationary
stochastic processes {xj(t)} and {xk(t)} as

0, () £ Blx, (¢ - Px (s + DI (K.1)

When the two processes are identical — i.e., when J = k, and
therefore xj(t) = xx(t) — ¢ (7,t) is an even function of Tt
as 1s immediately apparent from Eq. (K.1l). However, when
x.(t) # x,.(t), ¢ (t,t) is not generally an even function

J k ijk

of t. The definition, Eq. (K.1l), is a direct extension of
the definition, Eq. (7), of Ref. 34.

We define the instantaneous cross-spectral density

) (f,t) of the two processes {x,(t)} and {x, (t)} as the
Xij J k
Fourier transform with respect to 17 of ¢X X (1,t) — i.e.,
gk
® (r,t) 2 f o (t,8)e T2TETq | (K.2)
X.X X,.X
J7k le J Kk

which is a direct extension of the definition, Eq. (9a), of
Ref. 34, However, in the present case @x « (f,t) is not
ik
generally real and an even function of f as it is 1n the
case where x;(t) = xp(t). Let us further define the Fourier
transform with respect to t of @X < (fr,t) as
Jj'k
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A f“ i2mvt

[ (£,v) o L (fit)e dt (K.3)

Xij

which 1s a direct extension of Eq. (27) of Ref. 34.

We may relate ¢ (f,v) directly to the Fourier trans-

X.X

J7k
forms of the sample functions x;(t) and x,(t). Substituting
Egs. (X.1) and (K.2) into Eq. (X.3) and interchanging the

orders of expectation and integration, we have

X.X

3 (f,v) = E f f x (- Tyx, (b g>e‘i2"(fT‘Vt)det . (K.b)
Jk

—C0 =0

Let us now transform tc the new variables of integration

T T
t, =t - 5 s t, =t + 5 H (K.5)
hence, t +t,
T = b,-t, t = 5 s (K.6)
where [9(t,t)/8(t ,t,)| = 1. Substitution of Egs. (K.5) and

(K.6) into Eg. (XK:4) and using
dtdt = [3(t,t)/93(t,,t,)|dt dt, = dt dt, , (K.7)
we have after minor rearrangements

R 0 p00 —i2ﬂ[(f— %)t;—(f+ %)tlj
b () = T f [ HCRENCIE at dt,

- 00 = CO

-

o 1om( £+ §2’—)t1 w —i2q(f- 3’2~)t2
- md [ xy e e at, [ x(e,e at,
= % v _y
E Xj(f+ 2)Xk(f 2) s (K.8)
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where we have defined

ne>

f xj(t)e'izﬂftdt (K.9a)

- 00

Xj(f)

[ _3
J x, (t)e 12mLt 4, , (K.9p)

-0

Il

X, (f)

and where the superscript asterisk in Eg. (K.8) denotes the

complex conjugate. Thus, from Egq. (K.8) we see that @X . (f,v)
J7k

can be expressed directly in terms of an expectation of the

cross—-products of the Fouriler transforms of the sample func-

tions of the two processes {Xj(t)} and {xk(t)}.
The Fourier mate to Eq. (K.2) is

6, 5 (15t = f o . (r,6)e™ Tar (K.10)

Jk J7k

-—00

Combining the evaluations of Egs. (K.1) and (K.10) at T = 0
gives

b, (008D 2 BOG (05, (0)) - f N CRBLES (K.11)

—w  J

which is the extension of Eg. (12a) of Ref. 34 to instantaneous
cross-spectral densities. For any time t, integration of the
(complex) instantaneous cross-spectral density @X % (f,t)

3%
over all f gives the expected value of the product Xy (t)x (t)
at that same instant of time t.

Cross-spectral density input-response relations. Consider
the response {y(t)} of a linear time-invariant system to an
input process {x(t)}. Let h(t) denote the unit impulse
response of the system. For any input sample function x(t)
we have
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y(t) = f x(t)h(t-t)dr, (K.12)

-—00

as in Egq. (1.10b). Let H(f) denote the complex frequency response
of the system as defined by Egq. (1.9), and let X(f) and Y(f)
denote the Fourier transforms of x(t) and y(t) defined in the

same manner as in Eq. (1.9). Then, it is well known [e.g.,

p. 57 of Ref. 29] that X(f), Y(f), and H(f) are related by the
product

Y(f) = X(£)H(F) . (K.13)

Let {x:(t)} and {x,(t)} denote two different input processes
and let {yj%t)} and {yk¥t)} denote the corresponding response
processes.” That is, each sample function from process {xj(t)}
generates a response sample function by the relation

yj(t) = ( hj(T)Xj(t—T)dT s (K.14)

-—00

and each sample function from {xy(t)} also generates a comparable
response sample function

yk(t) = J hk(T)xk(t—T)dT . (K.15)

—_—00

Impulse response functions hj(t) and hy(t) are potentially dif-
ferent. The frequency domain counterparts of these input-
response relationships are

Yj(f) Xj(f)Hj(f) (K.16)

and

¥, (£) X, (£)H (£) . (K.17)

From Egs. (K.16) and (K.17), we therefore have
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E{Y#(r+ %)Yk(f—- %)} = E{X}(r+ %)xku*- %)}H}e(ﬁ %)Hk(f-— %), (K.18)

or, applying the definition, Eq. (K.8), to input processes,
output processes, and system complex frequency response functions,
we have

& (f,v) = 0 (f,v)d (f,v) , (K.19)
yjyk ijk hjhk

where no expectation operation 1s required in defining 5h h (f,v)
ik
because hj(t), hy(t) and their transforms are here assumed to be

deterministic.

Equation (K.19) expresses the transformed instantaneous
cross—-spectral density of the response processes {y.(t)} and
{yk(t)} as the product of the transformed instantantous cross-
spectra of the input processes and system impulse response
functions. Hence, from the Fourier mate to Eg. (K.3),

o (£,t) = f 3 (r,v)e T2y (K.20)
X.X X.X
J k ‘w J Kk

and the analogous relations for the response cross-spectra system
impulse response cross-spectra, we have by applying the con-
volution theorem to Eg. (K.19):

o) (f,t) = J o (f,t-u)d (f,u)du . (K.21)
yjyk ijk hjhk

—Co

Equations (K.19) and (K.21) are the instantaneous cross-spectral
density input-response relations that are direct extensions of
the instantaneous auto-spectral density input-response relations,
Egs. (39) and (40) of Ref. 3A4.

Reduction to the case of stationary input processes. Let

us now consider the case where ¢X X (1,t) defined by Eg. (K.1l)
3 %%
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is independent of t — i.e., is dependent only on the time dif-

ference 1. In this case, we see from Eq. (K.2) that . x (f,t)
J7k

also is independent of t. Denote thls independence by replac-

ing € by a vertically centered dot. It then follows immedlately

from Eqgq. (K.21) that @y (f,t) also is independent of t, which

<Y
j°k
we alsc shall denote by a vertically centered dot. Thus, when
¢ « (1,t) <28 independent of t, Eq. (K.21) reduces to
J7k
® (f,+) = @ (f,*) [ ® (f,u)du . (K.22)
yjyk XJ.Xk ) hjhk

However, from the counterpart of Eq. (K.3) applied to hjhk — 1l.e.,

A [T 127Vt
(f,v) = I % n (f,t)e at , (K.23)

d
hhy | nyny

we have by setting v = 0 in Eq. (K.23),

) (f,t)dt ) (£,0)
[ hjhk hjhk

-0

HE(f)Hk(f) s (K.24)

where the second line follows directly from Eq. (K.8) applied
to hjhyx rather than XjXg-. Combining Egs. (K.22) and (K.24)
yilelds

®yjyk<f,-) = @ijk(f,-)Hf(f)Hk<f) : (X.25)

Finally, by applying Eq. (K.11l) to the response Yyjyk», we have
from Egs. (K.25) for stationary input processes,
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E{yj(t)yk(t)} = J o«
J

-00

(f,°)H¥(f)Hk(f)df s (K.26)
k J

which is valid whenever the instantaneous input cross-correlation
function, Eq. (K.1l), is independent of t.
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